DOI: https://dx.doi.org/10.18565/therapy.2023.9.135-142
Alieva A.M., Nikitin I.G., Teplova N.V., Baykova I.E., Rakhaev A.M., Kudaeva M.V., Sozaeva M.R., Kotikova I.A.
1) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow; 2) Main Bureau of Medical and Social Expertise in the Kabardino-Balkarian Republic of the Ministry of Labor and Social Protection of Russia, Nalchik; 3) Kh.M. Berbekov Kabardino-Balkarian State University, Nalchik
1. Драпкина О.М., Бубнова М.Г., Самородская И.В. с соавт. Динамика показателей смертности от острых форм ишемической болезни сердца в Российской Федерации за период с 2015 по 2019 годы. Российский кардиологический журнал. 2021; 26(5): 88–93. [Drapkina O., Bubnova M., Samorodskaya I. et al. Dynamics of mortality rates from acute forms of coronary heart disease in the Russian Federation for the period from 2015 to 2019. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2021; 26(5): 88–93 (In Russ.)]. https://dx.doi.org/10.15829/1560-4071-2021-4441. EDN: WUNNMA. 2. Алиева А.М., Резник Е.В., Гасанова Э.Т. с соавт. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью. Архивъ внутренней медицины. 2018; 8(5): 333–45. [Alieva A., Reznik E., Gasanova E. et al. Clinical significance of determining blood biomarkers in patients with chronic heart failure. Arkhiv vnutrenney meditsiny = The Russian Archives of Internal Medicine. 2018; 8(5): 333–45 (In Russ.)].https://dx.doi.org/10.20514/2226-6704-2018-8-5-333-345. EDN: YKJWIP. 3. Bostrom P., Wu J., Jedrychowski P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012; 481(7382): 463–68. https://dx.doi.org/10.1038/nature10777. 4. Васюкова О.В., Касьянова Ю.В., Окороков П.Л., Безлепкина О.Б. Миокины и адипомиокины: медиаторы воспаления или уникальные молекулы таргетной терапии ожирения? Проблемы эндокринологии. 2021; 67(4): 36–45. [Vasyukova O., Kasyanova Yu., Okorokov P., Bezlepkina O. Myokines and adipomyokines: Inflammatory mediators or unique molecules for targeted obesity therapy? Problemy endokrinologii = Problems of Endocrinology. 2021; 67(4): 36–45 (In Russ.)].https://dx.doi.org/10.14341/probl12779. EDN: TGAWYG. 5. Liu S., Cui F., Ning K. et al. Role of irisin in physiology and pathology. Front Endocrinol (Lausanne). 2022; 13: 962968.https://dx.doi.org/10.3389/fendo.2022.962968. 6. Rabiee F., Lachinani L., Ghaedi S. et al. New insights into the cellular activities of Fndc5/irisin and its signaling pathways. Cell Biosci. 2020; 10: 51. https://dx.doi.org/10.1186/s13578-020-00413-3. 7. Bao J., She Q., Hu P. et al. Irisin, a fascinating field in our times. Trends Endocrinol Metab. 2022; 33(9): 601–13.https://dx.doi.org/10.1016/j.tem.2022.06.003. 8. Waseem R., Shamsi A., Mohammad T. et al. FNDC5/irisin: Physiology and pathophysiology. Molecules. 2022; 27(3): 1118.https://dx.doi.org/10.3390/molecules27031118. 9. Zhao R., Chen Y., Wang D. et al. Role of irisin in bone diseases. Front Endocrinol (Lausanne). 2023; 14: 1212892.https://dx.doi.org/10.3389/fendo.2023.1212892. 10. Радугин Ф.М., Тимкина Н.В., Каронова Т.Л. Метаболические свойства иризина в норме и при сахарном диабете. Ожирение и метаболизм. 2022; 19(3): 332–339. [Radugin F.M., Timkina N.V., Karonova T.L. Metabolic properties of irisin in normal and diabetic patients. Ozhirenie i metabolizm = Obesity and Metabolism. 2022; 19(3): 332–339 (In Russ.)].https://dx.doi.org/https://doi.org/10.14341/omet12899. EDN: KWGWPG. 11. Li H., Zhang Y., Wang F. et al. Effects of irisin on the differentiation and browning of human visceral white adipocytes. Am J Transl Res. 2019; 11(12): 7410–21. 12. Zhang Y., Xie C., Wang H. et al. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol Endocrinol Metab. 2016; 311(2): E530–41. https://dx.doi.org/10.1152/ajpendo.00094.2016. 13. Ahmadabadi F., Nakhaei H., Mogharnasi M., Huang C. Aerobic interval training improves irisin and chemerin levels of both liver and visceral adipose tissues and circulating asprosin in rats with metabolic syndrome. Physiol Int. 2021; 108(3): 383–97.https://dx.doi.org/10.1556/2060.2021.00182. 14. He Z., Li H., Han X. et al. Irisin inhibits osteocyte apoptosis by activating the Erk signaling pathway in vitro and attenuates ALCT-induced osteoarthritis in mice. Bone. 2020; 141: 115573. https://dx.doi.org/10.1016/j.bone.2020.115573. 15. Alvarez A., DeOcesano-Pereira C., Teixeira C., Moreira V. IL-1β and TNF-α modulation of proliferated and committed myoblasts: IL-6 and COX-2-derived prostaglandins as key actors in the mechanisms involved. Cells. 2020; 9(9): 2005.https://dx.doi.org/10.3390/cells9092005. 16. Wrann C., White J., Salogiannnis J. et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013; 18(5): 649–59. https://dx.doi.org/10.1016/j.cmet.2013.09.008. 17. Yin C., Hu W., Wang M. et al. Irisin as a mediator between obesity and vascular inflammation in Chinese children and adolescents. Nutr Metab Cardiovasc Dis. 2020; 30(2): 320–29. https://dx.doi.org/10.1016/j.numecd.2019.09.025. 18. Slate-Romano J., Yano N., Zhao T. Irisin reduces inflammatory signaling pathways in inflammation-mediated metabolic syndrome. Mol Cell Endocrinol. 2022; 552: 111676. https://dx.doi.org/10.1016/j.mce.2022.111676. 19. Irandoost P., Mesri Alamdari N., Saidpour A. et al. The effects of royal jelly and tocotrienol-rich fraction on impaired glycemic control and inflammation through irisin in obese rats. J Food Biochem. 2020; 44(12): e13493. https://dx.doi.org/10.1111/jfbc.13493. 20. Mazur-Bialy A. Superiority of the non-glycosylated form over the glycosylated form of irisin in the attenuation of adipocytic meta-inflammation: A potential factor in the fight against insulin resistance. Biomolecules. 2019; 9(9): 394.https://dx.doi.org/10.3390/biom9090394. 21. Ozkok Akbulut T., Cakir E., Agirgol S. et al. Are irisin levels associated with inflammation and insulin resistance in patients with moderate-to-severe psoriasis? Ital J Dermatol Venerol. 2022; 157(1): 47–54. https://dx.doi.org/10.23736/S2784-8671.21.07100-0. 22. Deng X., Huang W., Peng J. et al. Irisin alleviates advanced glycation end products-induced inflammation and endothelial dysfunction via Inhibiting ROS-NLRP3 inflammasome signaling. Inflammation. 2018; 41(1): 260–75.https://dx.doi.org/10.1007/s10753-017-0685-3. 23. Li Q., Zhang M., Zhao Y., Dong M. Irisin protects against LPS-stressed cardiac damage through inhibiting inflammation, apoptosis, and pyroptosis. Shock. 2021; 56(6): 1009–18. https://dx.doi.org/10.1097/SHK.0000000000001775. 24. Zhu W., Sahar N., Javaid H. et al. Exercise-induced irisin decreases inflammation and improves NAFLD by competitive binding with MD2. Cells. 2021; 10(12): 3306. https://dx.doi.org/10.3390/cells10123306. 25. Chi C., Fu H., Li Y. et al. Exerkine fibronectin type-III domain-containing protein 5/irisin-enriched extracellular vesicles delay vascular ageing by increasing SIRT6 stability. Eur Heart J. 2022; 43(43): 4579–95. https://dx.doi.org/10.1093/eurheartj/ehac431. 26. Ho M., Wang C. Role of irisin in myocardial infarction, heart failure, and cardiac hypertrophy. Cells. 2021; 10(8): 2103.https://dx.doi.org/10.3390/cells10082103. 27. Deng J., Yan F., Tian J. et al. Potential clinical biomarkers and perspectives in diabetic cardiomyopathy. Diabetol Metab Syndr. 2023; 15(1): 35. https://dx.doi.org/10.1186/s13098-023-00998-y. 28. Liu J., Qi B., Gan L. et al. A bibliometric analysis of the literature on irisin from 2012–2021. Int J Environ Res Public Health. 2022; 19(10): 6153. https://dx.doi.org/10.3390/ijerph19106153. 29. Fu J., Li F., Tang Y. et al. The emerging role of irisin in cardiovascular diseases. J Am Heart Assoc. 2021; 10(20): e022453.https://dx.doi.org/10.1161/JAHA.121.022453. 30. Ahmed T., Nassar M., Mohamed H. et al. Evaluation of serum levels of Irisin as a marker of endothelial dysfunction in patients with type 2 diabetes mellitus. Endocrinol Diabetes Metab. 2023; 6(3): e403. https://dx.doi.org/10.1002/edm2.403. 31. Almeida Gonzalez D., Rodriguez-Perez M., Fuentes Ferrer M. et al. Irisin, in women and men: Blood pressure, heart rate, obesity and insulin resistance. Front Endocrinol (Lausanne). 2023; 14: 1193110. https://dx.doi.org/10.3389/fendo.2023.1193110. 32. Saadeldin M., Elshaer S., Emara I. et al. Serum sclerostin and irisin as predictive markers for atherosclerosis in Egyptian type II diabetic female patients: A case control study. PLoS ONE. 2018; 13(11): e0206761. https://dx.doi.org/10.1371/journal.pone.0206761. 33. Zhang L., Xie Q., Tang C., Zhang A. Expressions of irisin and urotensin II and their relationships with blood pressure in patients with preeclampsia. Clin Exp Hypertens. 2017; 39(5): 460–67. https://dx.doi.org/10.1080/10641963.2016.1273945. 34. Maciorkowska M., Musiałowska D., Małyszko J. Adropin and irisin in arterial hypertension, diabetes mellitus and chronic kidney disease. Adv Clin Exp Med. 2019; 28(11): 1571–75. https://dx.doi.org/10.17219/acem/104551. 35. Carmona-Maurici J., Rosa A., Azcona-Granada N. et al. Irisin as a novel biomarker of subclinical atherosclerosis in severe obesity. Int J Mol Sci. 2023; 24(9): 8171. https://dx.doi.org/10.3390/ijms24098171. 36. Wenwen G., Baihui Z., Xia W. Lower irisin levels in coronary artery disease: A meta-analysis. Minerva Endocrinol. 2020; 45(1): 61–69. https://dx.doi.org/10.23736/S0391-1977.17.02663-3. 37. Hisamatsu T., Miura K., Arima H. et al. Relationship of serum irisin levels to prevalence and progression of coronary artery calcification: A prospective, population-based study. Int J Cardiol. 2018; 267: 177–82. https://dx.doi.org/10.1016/j.ijcard.2018.05.075. 38. Deng W. Association of serum irisin concentrations with presence and severity of coronary artery disease. Med Sci Monit. 2016; 22: 4193–97. https://dx.doi.org/10.12659/MSM.897376. 39. Efe T., Acar B., Ertem A. et al. Serum irisin level can predict the severity of coronary artery disease in patients with stable angina. Korean Circ J. 2017; 47(1): 44–49. https://dx.doi.org/10.4070/kcj.2016.0079. 40. Tanveer Y., Saif U., Lim Y. Serum Irisin Levels are inversely correlated with the severity of coronary artery disease confirmed by coronary angiography: A comparative cross-sectional study. Cureus. 2023; 15(7): e41475. https://dx.doi.org/10.7759/cureus.41475. 41. Ozturk D., Melekoglu A., Altinbilek E. et al. Association between serum irisin levels and ST-segment elevation myocardial infarction. Int J Gen Med. 2023; 16: 1355–62. https://dx.doi.org/10.2147/IJGM.S403564. 42. Chai Q., Zhang W., Gao L. et al. Serum irisin correlates to the severity of acute myocardial infarction and predicts the postoperative major adverse cardiovascular events. Biomol Biomed. 2023; 23(5): 785–91. https://dx.doi.org/10.17305/bb.2023.8888. 43. Huerta-Delgado A., Roffe-Vazquez D., Luna-Ceron E. et al. Association of irisin levels with cardiac magnetic resonance, inflammatory, and biochemical parameters in patients with chronic heart failure versus controls. Magn Reson Imaging. 2022; 93: 62–72.https://dx.doi.org/10.1016/j.mri.2022.07.006. 44. Berezin A., Lichtenauer M., Boxhammer E. et al. Discriminative value of serum irisin in prediction of heart failure with different phenotypes among patients with type 2 diabetes mellitus. Cells. 2022; 11(18): 2794. https://dx.doi.org/10.3390/cells11182794. 45. Berezin A., Obradovic A., Fushtey I. et al. Low plasma levels of irisin predict acutely decompensated heart failure in type 2 diabetes mellitus patients with chronic heart failure. J Cardiovasc Dev Dis. 2023; 10(4): 136. https://dx.doi.org/10.3390/jcdd10040136. 46. Wang S., Li J., Hu P. et al. Circulating irisin level as a biomarker for pure aortic stenosis and aortic valve calcification. J Cardiovasc Transl Res. 2023; 16(2): 443–52. https://dx.doi.org/10.1007/s12265-022-10327-9. 47. Sun N., Chen Y., Fan Y. et al. Plasma irisin levels are associated with hemodynamic and clinical outcome in idiopathic pulmonary arterial hypertension patients. Intern Emerg Med. 2021; 16(3): 625–32. https://dx.doi.org/10.1007/s11739-020-02467-0. 48. Loffler D., Muller U., Scheuermann K. et al. Serum irisin levels are regulated by acute strenuous exercise. J Clin Endocrinol Metab. 2015; 100(4): 1289–99. https://dx.doi.org/10.1210/jc.2014-2932. 49. Daskalopoulou S., Cooke A., Gomez Y. et al. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur J Endocrinol. 2014; 171(3): 343–52. https://dx.doi.org/10.1530/EJE-14-0204. 50. Norheim F., Langleite T., Hjorth M. et al. The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J. 2014; 281(3): 739–49. https://dx.doi.org/10.1111/febs.12619. 51. Tsuchiya Y., Ando D., Takamatsu K., Goto K. Resistance exercise induces a greater irisin response than endurance exercise. Metabolism. 2015; 64(9): 1042–50. https://dx.doi.org/10.1016/j.metabol.2015.05.010. 52. Huo C., Yu X., Sun Y. et al. Irisin lowers blood pressure by activating the Nrf2 signaling pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Toxicol Appl Pharmacol. 2020; 394: 114953. https://dx.doi.org/10.1016/j.taap.2020.114953. 53. Ling L., Chen D., Tong Y. et al. Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats. J Hypertens. 2018; 36(5): 1104–14.https://dx.doi.org/10.1097/HJH.0000000000001654. 54. Han F., Zhang S., Hou N. et al. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am J Physiol Heart Circ Physiol. 2015; 309(9): H1501–8. https://dx.doi.org/10.1152/ajpheart.00443.2015. 55. Zhang Y., Mu Q., Zhou Z. et al. Protective effect of irisin on atherosclerosis via suppressing oxidized low density lipoprotein induced vascular inflammation and endothelial dysfunction. PLoS ONE. 2016; 11(6): e0158038.https://dx.doi.org/10.1371/journal.pone.0158038. 56. Zhu D., Wang H., Zhang J. et al. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J Mol Cell Cardiol. 2015; 87: 138–47. https://dx.doi.org/10.1016/j.yjmcc.2015.07.015. 57. Lu J., Xiang G., Liu M. et al. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice. Atherosclerosis. 2015; 243(2): 438–48. https://dx.doi.org/10.1016/j.atherosclerosis.2015.10.020. 58. Fu J., Li F., Tang Y. et al. The emerging role of irisin in cardiovascular diseases. J Am Heart Assoc. 2021; 10(20): e022453.https://dx.doi.org/10.1161/JAHA.121.022453. 59. Wang Z., Chen K., Han Y. et al. Irisin protects heart against ischemia-reperfusion injury through a SOD2-dependent mitochondria mechanism. J Cardiovasc Pharmacol. 2018; 72(6): 259–69. https://dx.doi.org/10.1097/FJC.0000000000000608. 60. Liao Q., Qu S., Tang L. et al. Irisin exerts a therapeutic effect against myocardial infarction via promoting angiogenesis. Acta Pharmacol Sin. 2019; 40(10): 1314–21. https://dx.doi.org/10.1038/s41401-019-0230-z. 61. Xin C., Zhang J., Hao N. et al. Irisin inhibits NLRP3 inflammasome activation in HG/HF incubated cardiac microvascular endothelial cells with H/R injury. Microcirculation. 2022; 29(8): e12786. https://dx.doi.org/10.1111/micc.12786. 62. Li R., Wu S., Wu Y. et al. Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK–ULK1 pathway. J Mol Cell Cardiol. 2018; 121: 242–55.https://dx.doi.org/10.1016/j.yjmcc.2018.07.250. 63. Li R., Wang X., Wu S. et al. Irisin ameliorates angiotensin II-induced cardiomyocyte apoptosis through autophagy. J Cell Physiol. 2019; 234(10): 17578–88. https://dx.doi.org/10.1002/jcp.28382. 64. Brailoiu E., Deliu E., Sporici R., Brailoiu G. Irisin evokes bradycardia by activating cardiac-projecting neurons of nucleus ambiguus. Physiol Rep. 2015; 3(6): e12419. https://dx.doi.org/10.14814/phy2.12419. 65. Deng J., Zhang N., Wang Y. et al. FNDC5/irisin improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells for myocardial infarction. Stem Cell Res Ther. 2020; 11(1): 228. https://dx.doi.org/10.1186/s13287-020-01746-z. 66. Chen R., Fan X., Chen G. et al. Irisin attenuates angiotensin II-induced cardiac fibrosis via Nrf2 mediated inhibition of ROS/TGFβ1/Smad2/3 signaling axis. Chem Biol Interact. 2019; 302: 11–21. https://dx.doi.org/10.1016/j.cbi.2019.01.031. 67. Zhuo C., Xin J., Huang W. et al. Irisin protects against doxorubicin-induced cardiotoxicity by improving AMPK–Nrf2 dependent mitochondrial fusion and strengthening endogenous anti-oxidant defense mechanisms. Toxicology. 2023; 494: 153597.https://dx.doi.org/10.1016/j.tox.2023.153597. 68. Liu C., Wei A., Wang T. Irisin, an effective treatment for cardiovascular diseases? J Cardiovasc Dev Dis. 2022; 9(9): 305.https://dx.doi.org/10.3390/jcdd9090305.
Amina M. Alieva, PhD in Medical Sciences, associate professor of the Department of hospital therapy named after Academician G.I. Storozhakov of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova St.
E-mail: amisha_alieva@mail.ru
ORCID: https://orcid.org/0000-0001-5416-8579
Igor G. Nikitin, MD, professor, head of the Department of hospital therapy named after Academician G.I. Storozhakov of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova St.
ORCID: https://orcid.org/0000-0003-1699-0881
Natalya V. Teplova, MD, professor, head of the Department of clinical pharmacology of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova St.
ORCID: https://orcid.org/0000-0002-7181-4680
Irina E. Baykova, PhD in Medical Sciences, associate professor of the Department of hospital therapy named after Academician G.I. Storozhakov of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova St.
ORCID: https://orcid.org/0000-0003-0886-6290
Alik M. Rakhaev, MD, head of the expert staff of Main Bureau of Medical and Social Expertise in the Kabardino-Balkarian Republic of the Ministry of Labor and Social Protection of Russia. Address: 360051, Nalchik, 47 Gorkogo St.
ORCID: https://orcid.org/0000-0001-9601-1174
Madina V. Kudaeva, doctor for medical and social expertise, therapist at the expert staff of Main Bureau of Medical and Social Expertise for the Kabardino-Balkarian Republic of the Ministry of Labor and Social Protection of Russia. Address: 360009, Nalchik, 131В Tarchokova St.
ORCID: https://orcid.org/0009-0003-9017-7191
Malika R. Sozaeva, student of the Faculty of pediatrics, Kh.M. Berbekov Kabardino-Balkarian State University. Address: 360004, Nalchik, 173 Chernyshevskogo St.
ORCID: https://orcid.org/0009-0003-8949-0017
Irina A. Kotikova, student of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova St.
ORCID: https://orcid.org/0000-0001-5352-8499