Type 2 diabetes mellitus and cardiovascular diseases. Therapy that changes prognosis


T.Yu. Demidova, Ya.V. Pugovkina

1) N.I. Pirogov Russian National Research Medical University, Department of endocrinology, Moscow; 2) Russian Medical Academy of Continuous Professional Education, Department of endocrinology and diabetology, Moscow
The article discusses the role of type 2 diabetes mellitus as an important risk factor for the development of cardiovascular diseases. The authors analyze in detail the pathogenetic mechanisms of coronary artery damage, the development of diabetic cardiomyopathy and cardiac autonomic neuropathy, as well as the development and progression of atherosclerosis in diabetes mellitus. The therapeutic strategies of management of type 2 diabetes mellitus aimed to preventing the development of cardiovascular complications and improving their prognosis are considered. The influence of hypoglycemic therapy on the course and prognosis of cardiovascular diseases is discussed. It is noted that SGLT-2 inhibitors are priority antidiabetic drugs in patients with type 2 diabetes mellitus and coronary artery disease without signs of heart failure. A detailed review of recent published studies on the effect of drugs of this group (dapagliflozin, canagliflozin, and empagliflozin) on cardiovascular outcomes in patients with type 2 diabetes mellitus is presented. Both their advantages over other classes of hypoglycemic drugs and the potential side effects of therapy are discussed.

Literature


  1. Демографический ежегодник России 2015: Стат. сб./ Росстат. Mосква, 2015. 263 c. [Demographic Yearbook of Russia 2015. Rosstat. Moscow, 2015. 263 p. (in Russ.)]
  2. Roger V.L., Go A.S., Lloyd-Jones D.M., Benjamin E.J., Berry J.D., Borden W.B., Bravata D.M., Dai S., Ford E.S., Fox C.S. Fullerton H.J., Gillespie C., Hailpern S.M., Heit J.A., Howard V.J., Kissela B.M., Kittner S.J., Lackland D.T., Lichtman J.H., Lisabeth L.D., Makuc D.M., Marcus G.M., Marelli A., Matchar D.B., Moy C.S., Mozaffarian D., Mussolino M.E., Nichol G., Paynter N.P., Soliman E.Z., Sorlie P.D., Sotoodehnia N., Turan T.N., Virani S.S., Wong N.D., Woo D., Turner M.B. Executive summary: heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation. 2012;125:188–97.
  3. Бойцов С.А., Самородская И.В. Смертность и потерянные годы жизни в результате преждевременной смертности от болезней системы кровообращения. Кардиоваскулярная терапия и профилактика. 2014;13(2):5–11. [Bojtsov S.A., Samorodskaya I.V. Mortality and lost years of life due to premature mortality from diseases of the circulatory system. Cardiovascular therapy and prevention. 2014;13(2):5–11 (in Russ.)]
  4. Nicholls S.J., Tuzcu E.M., Kalidindi S., Wolski K., Moon K.W., Sipahi I., Schoenhagen P., Nissen S.E. Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J. Am. Coll. Cardiol. 2008;52:255–62.
  5. Cecilia C. Low Wang, Connie N. Hess, W.R. Hiatt, A.B. Goldfine. Atherosclerotic Cardiovascular disease and heart failure in type 2 diabetes – mechanisms, management, and clinical considerations. Circulation. 2016;133(24):2459–502.
  6. Glass C.K., Olefsky J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15:635–64.
  7. Rijzewijk L.J., Jonker J.T., van der Meer R.W., Lubberink M., de Jong H.W., Romijn J.A., Bax J.J., de Roos A., Heine R.J., Twisk J.W., Windhorst A.D., Lammertsma A.A., Smit J.W., Diamant M., Lamb H.J. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes. J. Am. Coll. Cardiol. 2010;56:225–33.
  8. Lopez B., Gonzalez A., Ravassa S., Beaumont J., Moreno M.U., San José G., Querejeta R., Díez J. Circulation biomarkers of myocardial fibrosis. J. Am. Coll. Cardiol. 2015;65(22):2449–56.
  9. Falcao-Pires I., Leite-Moreira A.F. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail. Rev. 2012;17:325–44.
  10. Levelt E., Mahmod M., Piechnik S.K., Ariga R., Francis J.M., Rodgers C.T., Clarke W.T., Sabharwal N., Schneider J.E., Karamitsos T.D., Clarke K., Rider O.J., Neubauer S. Relationship between left ventricular structural and metabolic remodeling in type 2 diabetes. Diabetes. 2016;65:44–52.
  11. Levelt E., Pavlides M., Banerjee R., Mahmod M., Kelly C., Sellwood J., Ariga R., Thomas S., Francis J., Rodgers C., Clarke W., Sabharwal N., Antoniades C., Schneider J., Robson M., Clarke K., Karamitsos T., Rider O., Neubauer S. Ectopic and visceral fat deposition in lean and obese patients with type 2 diabetes. J. Am. Coll. Cardiol. 2016;68:53–63.
  12. Falcão-Pires I., Hamdani N., Borbély A., Gavina C., Schalkwijk C.G., van der Velden J., van Heerebeek L., Stienen G.J., Niessen H.W., Leite-Moreira A.F., Paulus W.J. Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation. 2011;124:1151–9.
  13. Zhou X., Ma L., Habibi J., Whaley-Connell A., Hayden M.R., Tilmon R.D., Brown A.N., Kim J.A., Demarco V.G., Sowers J.R. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the Zucker obese rat. Hypertension. 2010;55:880–8.
  14. Hayden M.R., Habibi J., Joginpally T., Karuparthi P.R., Sowers J.R. Ultrastructure study of transgenic Ren2 rat aorta. Part 1: rndothelium and intima. Cardiorenal. Med. 2012;2:66–82.
  15. Campbell D.J., Somaratne J.B., Jenkins A.J., Prior D.L., Yii M., Kenny J.F., Newcomb A.E., Schalkwijk C.G., Black M.J., Kelly D.J. Impact of type 2 diabetes and the metabolic syndrome on myocardial structure and microvasculature of men with coronary artery disease. Cardiovasc. Diabetol. 2011;10:80.
  16. Wong T.C., Piehler K.M., Kang I.A., Kadakkal A., Kellman P., Schwartzman D.S., Mulukutla S.R., Simon M.A., Shroff S.G., Kuller L.H., Schelbert E.B. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur. Heart J. 2014;35:657–64.
  17. Shimizu I., Minamino T., Toko H., et al. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J. Clin. Invest. 2010;120:1506–14.
  18. Levelt E., Rodgers C.T., Clarke W.T., et al. Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur. Heart J. 2016;37:3461–9.
  19. Pappachan J.M., Sebastian J., Bino B.C., Jayaprakash K., Vijayakumar K., Sujathan P., Adinegara L.A. Cardiac autonomic neuropathy in diabetes mellitus: prevalence, risk factors and utility of corrected QT interval in the ECG for its diagnosis. Postgrad. Med. J. 2008;84:205–10.
  20. Di Carli M.F., Bianco-Batlles D., Landa M.E., Kazmers A., Groehn H., Muzik O., Grunberger G. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation. 1999;100:813–9.
  21. Taskiran M., Fritz-Hansen T., Rasmussen V., Larsson H.B., Hilsted J. Decreased myocardial perfusion reserve in diabetic autonomic neuropathy. Diabetes. 2002;51:3306–10.
  22. Iyngkaran P., Anavekar N., Majoni W., Thomas M.C. The role and management of sympathetic overactivity in cardiovascular and renal complications of diabetes. Diabetes Metab. 2013;39:290–8.
  23. Falcao-Pires I., Leite-Moreira A.F. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail. Rev. 2012;17:325–44.
  24. Olshansky B., Sabbah H.N., Hauptman P.J., Colucci W.S. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation. 2008;118:863–71.
  25. UKPDS Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:854–65.
  26. UKPDS Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837–53.
  27. Hiatt W.R., Kaul S., Smith R.J. The cardiovascular safety of diabetes drugs–insights from the rosiglitazone experience. N. Engl. J. Med. 2013;369:1285–7.
  28. Lincoff A.M., Wolski K., Nicholls S.J., Nissen S.E. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298:1180–8.
  29. Cherney D.Z., Perkins B.A., Soleymanlou N., Maione M., Lai V., Lee A., Fagan N.M., Woerle H.J., Johansen O.E., Broedl U.C., von Eynatten M. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–97.
  30. Mudaliar S., Polidori D., Zambrowicz B., Henry R.R. Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport: from bench to bedside. Diabetes Care. 2015;38:2344–53.
  31. Abdul-Ghani M.A., Norton L., De Fronzo R.A. Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus. Am. J. Physiol. Renal. Physiol. 2015;309:889–900.
  32. Zinman B., Wanner C., Lachin J.M., et al; EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015;373:2117–28.
  33. Inzucchi S.E., Zinman B., Wanner C., Ferrari R., Fitchett D., Hantel S., Espadero R.M., Woerle H.J., Broedl U.C., Johansen O.E. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab. Vasc. Dis. Res. 2015;12:90–100.
  34. Riege T., Masuda T., Gerasimova M. et al. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am. J. Physiol. Renal. Physiol. 2014;306:188–93.
  35. Cherney D.Z., Perkins B.A., Soleymanlou N., Maione M., Lai V., Lee A., Fagan N.M., Woerle H.J., Johansen O.E., Broedl U.C., von Eynatten M. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–97.
  36. Marathe P.H., Dove A.E., Close K.L. Diabetes News. J. Diabetes. 2017 Jun 28. doi: 10.1111/1753-0407.12579 [Epub ahead of print]


About the Autors


Tatiana Yu. Demidova, MD, professor, head of the Department of endocrinology, N.I. Pirogov Russian National Research Medical University. Address: 109263, Moscow, 4/1 Shkuleva St. Tel.: +74991788238.
E-mail: t.y.demidova@gmail.com

Yaroslava V. Pugovkina, postgraduate student of the Department of endocrinology and diabetology, Russian Medical Academy of Continuous Professional Education. Address: 125993, Moscow, 2/1 Barrikadnaya St.
Tel.: +74992522104. E-mail: viktorovna_y87@mail.ru


Similar Articles


Бионика Медиа