The importance of choosing a mucoregulator in the treatment of cough in case of upper and lower respiratory tract diseases. Experience of use and perspectives of carbocysteine therapy


DOI: https://dx.doi.org/10.18565/therapy.2024.6.137-146

Selivanova G.B., Poteshkina N.G.

1) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow; 2) City Clinical Hospital No. 52 of the Department of Healthcare of Moscow
Abstract. High prevalence of upper and lower respiratory tract infectious diseases accompanied by cough makes to be relevant the problem of choosing effective drugs with mucoregulatory action. Long-term experience of using carbocysteine in clinical practice as part of pathogenetic therapy for cough in respiratory diseases allows it to significantly increase the efficacy of treatment, reduce the risk of overlaying bacterial infection in case of viral lesions, significantly reduce the number of infectious exacerbations, improve life quality of patients and reduce periods of their disability.

Literature


1. Scaglione F., Petrini O. Mucoactive agents in the therapy of upper respiratory airways infections: Fair to describe them just as mucoactive? Clin Med Insights Ear Nose Throat. 2019: 12: 1179550618821930.


https://doi.org/10.1177/1179550618821930. PMID: 30670922. PMCID: PMC6328955.


2. Niederman M.S., Torres A. Respiratory infections. Eur Respir Rev. 2022; 31(166): 220150.


https://doi.org/10.1183/16000617.0150-2022. PMID: 36261160. PMCID: PMC9724828.


3. Woodhead M., Blasi F., Ewig S. et al. Guidelines for the management of adult lower respiratory tract infections – full version. Clin Microbiol Infect. 2011; 17: Suppl. 6: E1–E59.


https://doi.org/10.1111/j.1469-0691.2011.03672.x. PMID: 21951385. PMCID: PMC7128977.


4. GBD 2016. Lower Respiratory Infections Collaborators. Estimates of the global, regional and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018; 18(11): 1191–1210.


https://doi.org/10.1016/s1473-3099(18)30310-4. PMID: 30243584. PMCID: PMC6202443.


5. Sliedrecht A., den Elzen W.P., Verheij T.J. et al. Incidence and predictive factors of lower respiratory tract infections among the very elderly in the general population. The Leiden 85-plus Study. Thorax. 2008; 63(9): 817–22.


https://doi.org/10.1136/thx.2007.093013. PMID: 18388206.


6. Reynolds D., Burnham J.P., Vazquez Guillamet C. et al. The threat of multidrug-resistant/extensively drug-resistant Gram-negative respiratory infections: Another pandemic. Eur Respir Rev. 2022; 31(166): 220068.


https://doi.org/10.1183/16000617.0068-2022. PMID: 36261159. PMCID: PMC9724833.


7. Naqvi K.F., Mazzone S.B., Shiloh M.U. Infectious and inflammatory pathways to cough. Annu Rev Physiol. 2023; 85: 71–91.


https://doi.org/10.1146/annurev-physiol-031422-092315. PMID: 36170660. PMCID: PMC9918720.


8. McGovern A.E., Short K.R., Moe A.A.K., Mazzone S.B. Translational review: Neuroimmune mechanisms in cough and emerging therapeutic targets. J Allergy Clin Immunol. 2018; 142(5): 1392–1402.


https://doi.org/10.1016/j.jaci.2018.09.004. PMID: 30409248.


9. Jones R.M., Brosseau L.M. Aerosol transmission of infectious disease. J Occup Environ Med. 2015; 57(5): 501–8.


https://doi.org/10.1097/jom.0000000000000448. PMID: 25816216.


10. Abdullah H., Heaney L.G., Cosby S.L., McGarvey L.P. Rhinovirus upregulates transient receptor potential channels in a human neuronal cell line: Implications for respiratory virus-induced cough reflex sensitivity. Thorax. 2014; 69(1): 46–54.


https://doi.org/10.1136/thoraxjnl-2013-203894. PMID: 24002057.


11. Mazzone S.B., Undem B.J. Vagal afferent innervation of the airways in health and disease. Physiol Rev. 2016; 96(3): 975–1024.


https://doi.org/10.1152/physrev.00039.2015. PMID: 27279650. PMCID: PMC4982036.


12. Lai K., Lin L., Liu B. et al. Eosinophilic airway inflammation is common in subacute cough following acute upper respiratory tract infection. Respirology. 2016; 21(4): 683–88.


https://doi.org/10.1111/resp.12748. PMID: 26969485.


13. Прохорович Е.А., Силина Е.Г. Лекарственные препараты для лечения кашля и заболеваний, сопровождающихся выделением мокроты. РМЖ. Медицинское обозрение. 2019; 3(9-1): 25–28. (Prohorovich E.A., Silina E.G. Medicines for the treatment of cough and diseases accompanied by sputum production. Russkiy meditsisnkiy zhurnal. Meditsinskoye obozreniye = Russian Medical Journal. Medical Review. 2019; 3(9-1): 25–28 (In Russ.)). EDN: XMIKRM.


14. Казанцев В.А. Мукоактивная терапия при лечении больных с инфекциями нижних дыхательных путей. Медицинский совет. 2015; (16): 83–89. (Kazantsev V.A. Mucoactive therapy in the treatment of patients with lower respiratory tract infections. Meditsinskiy sovet = Medical Council. 2015; (16): 83–89 (In Russ.)). EDN: UNTMVT.


15. Бабак С.Л., Горбунова М.В., Малявин А.Г. Муцины и карбоцистеин: защита дыхательных путей. Терапия. 2021; 7(10): 160–168. (Babak S.L., Gorbunova M.V., Malyavin A.G. Mucins and carbocisteine: Respiratory protection. Terapiya = Therapy. 2021; 7(10): 160–168 (In Russ.)).


https://doi.org/10.18565/therapy.2021.10.160-168. EDN: JTAWPA.


16. Ходзицкая В.К., Ходзицкая С.В. Нарушение и коррекция мукоцилиарного клиренса при заболеваниях дыхательных путей и ЛОР-органов. Болезни и антибиотики. 2010. Доступ: http://antibiotic.mif-ua.com/archive/issue-14554/article-14576/ (дата обращения – 22.08.2024). (Khodzitskaya V.K., Khodzitskaya S.V. Disturbance and correction of mucociliary clearance in diseases of the respiratory tract and ENT organs. Bolezni i antibiotiki = Diseases and Antibiotics. 2010. URL: http://antibiotic.mif-ua.com/archive/issue-14554/article-14576/ (date of access – 22.08.2024) (In Russ.)).


17. Hill D.B., Button B., Rubinstein M., Boucher R.C. Physiology and pathophysiology of human airway mucus. Physiol Rev. 2022; 102(4): 1757–1836.


https://doi.org/10.1152/physrev.00004.2021. PMID: 35001665. PMCID: PMC9665957.


18. Ntyonga-Pono M.-P. COVID-19 infection and oxidative stress: An under-explored approach for prevention and treatment? Pan Afr Med J. 2020; 35(Suppl 2): 12.


https://doi.org/10.11604/pamj.2020.35.2.22877. PMID: 32528623. PMCID: PMC7266475.


19. Bianco A., Conte S., Mariniello D.F. et al. Mucolytic and antioxidant properties of carbocysteine as a strategy in COVID-19 therapy. Life (Basel). 2022; 12(11): 1824.


https://doi.org/10.3390/life12111824. PMID: 36362979. PMCID: PMC9692377.


20. Государственный реестр лекарственных средств Минздрава России. Инструкция по применению лекарственного препарата для медицинского применения Касцебене. РУ: ЛП-№(000670)-(РГ-RU) от 06.04.2022. Доступ: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=40688d8d-0a2d-45f4-8fe8-10dc42c334ff (дата обращения – 21.08.2024). (State Register of Medicines of the Ministry of Healthcare of Russia. Instructions for use of the medicinal product for medical use Kascebene. Registration certificate: ЛП-№(000670)-(РГ-RU) dated 04/06/2022. URL: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=40688d8d-0a2d-45f4-8fe8-10dc42c334ff (date of access – 21.08.2024) (In Russ.)).


21. Hooper C., Calvert J. The role for S-carboxymethylcysteine (Carbocysteine) in the management of chronic obstructive pulmonary disease. Int J Chronic Obstr Pulm. Dis. 2008; 3(4): 659–69. PMID: 19281081. PMCID: PMC2650606.


22. Pace E., Cerveri I., Lacedonia D. et al. Clinical efficacy of carbocysteine in COPD: Beyond the mucolytic action. Pharmaceutics. 2022; 14(6): 1261.


https://doi.org/10.3390/pharmaceutics14061261. PMID: 35745833. PMCID: PMC9227620.


23. Braga P.C., Scaglione F., Scarpazza G. et al. Comparison between penetration of amoxicillin combined with carbocysteine and amoxicillin alone in pathological bronchial secretions and pulmonary tissue. Int J Clin Pharmacol Res. 1985; 5(5): 331–40. PMID: 4066083.


24. Kahraman M.E., Yüksel F., Özbuğday Y. The relationship between Covid-19 and mucociliary clearance. Acta Otolaryngol. 2021; 141(11): 989–93.


https://doi.org/10.1080/00016489.2021.1991592. PMID: 34694199.


25. Wang W., Guan W.-J., Huang R.-Q. et al. Carbocysteine attenuates TNF-α-induced inflammation in human alveolar epithelial cells in vitro through suppressing NF-κB and ERK1/2 MAPK signaling pathways. Acta Pharmacol Sin. 2016; 37(5): 629–36.


https://doi.org/10.1038/aps.2015.150. PMID: 26997568. PMCID: PMC4857541.


26. Laforge M., Elbim C., Frere C. et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020; 20(9): 515–16.


https://doi.org/10.1038/s41577-020-0407-1. PMID: 32728221. PMCID: PMC738842.


27. Wu J. Tackle the free radicals damage in COVID-19. Nitric Oxide. 2020; 102: 39–41.


https://doi.org/10.1016/j.niox.2020.06.002. PMID: 32562746. PMCID: PMC7837363.


28. Bakadia B.M., Boni B.O.O., Ahmed A.A.Q., Yang G. The impact of oxidative stress damage induced by the environmental stressors on COVID-19. Life Sci. 2021; 264: 118653.


https://doi.org/10.1016/j.lfs.2020.118653. PMID: 33115606. PMCID: PMC7586125.


29. Horby P., Lim W.S., Emberson J.R. et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021; 384(8): 693–704.


https://doi.org/10.1056/nejmoa2021436. PMID: 32678530. PMCID: PMC7383595.


30. Лещенко И.В. Острый бронхит. М.: ГЭОТАР-Медиа. 2019; 96 с. (Leshchenko I.V. Acute bronchitis. Moscow: GЕOTAR-Media. 2019; 96 pp. (In Russ.)). ISBN: 978-5-9704-4827-4.


31. Bonser L.R., Erle D.J. Airway mucus and asthma: The role of MUC5AC and MUC5B. J Clin Med. 2017; 6(12): 112.


https://doi.org/10.3390/jcm6120112. PMID: 29186064. PMCID: PMC5742801.


32. Linden D., Guo-Parke H., Coyle P.V. et al. Respiratory viral infection: A potential “missing link” in the pathogenesis of COPD. Eur Respir Rev. 2019; 28(151): 180063.


https://doi.org/10.1183/16000617.0063-2018. PMID: 30872396. PMCID: PMC9488189.


33. Vogelmeier C.F., Román Rodríguez M., Singh D. et al. Goals of COPD treatment: Focus on symptoms and exacerbations. Respir Med. 2020; 166: 105938.


https://doi.org/10.1016/j.rmed.2020.105938. PMID: 32250871.


34. Zeng Z., Yang D., Huang X., Xiao Z. Effects of carbocysteine on patients with COPD: A systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2017; 12: 2277–83.


https://doi.org/10.2147/COPD.S140603. PMID: 28814855. PMCID: PMC5546781.


35. Zheng J.P., Kang J., Huang S.G. et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): A randomised placebo-controlled study. Lancet. 2008; 371(9629): 2013–18.


https://doi.org/10.1016/S0140-6736(08)60869-7. PMID: 18555912.


About the Autors


Galina B. Selivanova, MD, Dr. Sci. (Medicine), professor, professor of the Department of general therapy of the Faculty of continuing professional education, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova St.
E-mail: galina.selivanova@rambler.ru
ORCID: https://orcid.org/0000-0003-2980-9754
Natalia G. Poteshkina, MD, Dr. Sci. (Medicine), professor, head of the Department of general therapy of the Faculty of continuing professional education, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, director of the University clinic of general therapy, City clinical hospital No. 52 of the Department of Healthcare of Moscow. Address: 117997, Moscow, 1 Ostrovityanova St.
ORCID: https://orcid.org/0000-0001-9803-2139


Similar Articles


Бионика Медиа