Phenomenon of aging liver. Part I: Molecular-genetic, cellular, and tissue mechanisms


DOI: https://dx.doi.org/10.18565/therapy.2024.9.152-162

Prikhodko V.A., Okovityi S.V.

1) Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of Russia; 2) Saint Petersburg State University
Abstract. As the life expectancy of the world’s population increases, the medical and biological aspects of aging of both the body as a whole and individual organs are becoming increasingly important. The aim of the review is to summarize the literature data on numerous mechanisms and factors of liver aging at various levels of organization of living systems. The first part of the review contains information concerning molecular-genetic, cellular, and tissue changes that occur in liver during its natural aging.

Literature


1. Central Intelligence Agency of the United States of America. The World Factbook Archives. URL: https://web.archive.org/web/20190621041256/https://www.cia.gov/library/publications/the-world-factbook/index.html (date of access – 21.10.2024).


2. Department of Economic and Social Affairs of the United Nations. World social report 2023: Leaving no one behind in an ageing world. URL: https://www.un.org/development/desa/dspd/wp-content/uploads/sites/22/2023/01/WSR_2023_Chapter_Key_Messages.pdf (date of access – 21.10.2024).


3. Федеральная служба государственной статистики (Росстат). Здравоохранение в России. 2023: Статистический сборник. Доступ: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2023.pdf (дата обращения – 21.10.2024). (Federal State Statistics Service (Rosstat). Healthcare in Russia. 2023: Statistical collection. URL: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2023.pdf (date of access – 21.10.2024) (In Russ.)).


4. da Costa J.P., Vitorino R., Silva G.M. et al. A synopsis on aging-theories, mechanisms and future prospects. Ageing Res Rev. 2016; 29: 90–112.


https://doi.org/10.1016/j.arr.2016.06.005. PMID: 27353257. PMCID: PMC5991498.


5. Лазебник Л.Б., Ильченко Л.Ю. Возрастные изменения печени (клинические и морфологические аспекты). Клиническая геронтология. 2007; 13(1): 3–8. (Lazebnik L.B., Ilchenko L.Yu. Age liver changes (clinical and morphological aspects). Klinicheskaya gerontologiya = Clinical Gerontology. 2007; 13(1): 3–8 (In Russ.)). EDN: JHCYRP.


6. Georgieva M., Xenodochidis C., Krasteva N. Old age as a risk factor for liver diseases: Modern therapeutic approaches. Exp Gerontol. 2023; 184: 112334.


https://doi.org/10.1016/j.exger.2023.112334. PMID: 37977514.


7. Cagan A., Baez-Ortega A., Brzozowska N. et al. Somatic mutation rates scale with lifespan across mammals. Nature. 2022; 604(7906): 517–24.


https://doi.org/10.1038/s41586-022-04618-z. PMID: 35418684. PMCID: PMC9021023.


8. Wang M.J., Chen F., Lau J.T.Y., Hu Y.-P. Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death Dis. 2017; 8(5): e2805.


https://doi.org/10.1038/cddis.2017.167. PMID: 28518148. PMCID: PMC5520697.


9. Matsumoto T. Implications of polyploidy and ploidy alterations in hepatocytes in liver injuries and cancers. Int J Mol Sci. 2022; 23(16): 9409.


https://doi.org/10.3390/ijms23169409. PMID: 36012671. PMCID: PMC9409051.


10. Schatzlein S.C., Rudolph K.L. Telomeres and telomerase in liver generation and cirrhosis. In: The Liver: Biology and Pathobiology, 6th ed. Arias I.M., Alter H.J., Boyer J.L. et al. (eds). Hoboken (NJ): John Wiley & Sons Ltd. 2020; 1122 pp.


https://doi.org/10.1002/9781119436812.ch74.


11. Mir S.M., Tehrani S.S., Goodarzi G. et al. Shelterin complex at telomeres: Implications in ageing. Clin Interv Aging. 2020; 15: 827–39.


https://doi.org/10.2147/CIA.S256425. PMID: 32581523. PMCID: PMC7276337.


12. Baek J.H., Son H., Jeong Y.-H. et al. Chronological aging standard curves of telomere length and mitochondrial DNA copy number in twelve tissues of C57BL/6 male mouse. Cells. 2019; 8(3): 247.


https://doi.org/10.3390/cells8030247. PMID: 30875959. PMCID: PMC6468494.


13. Cherif H., Tarry J.L., Ozanne S.E., Hales C.N. Ageing and telomeres: A study into organ- and gender-specific telomere shortening. Nucleic Acids Res. 2003; 31(5): 1576–83.


https://doi.org/10.1093/nar/gkg208. PMID: 12595567. PMCID: PMC149817.


14. Takubo K., Nakamura K., Izumiyama N. et al. Telomere shortening with aging in human liver. J Gerontol A Biol Sci Med Sci. 2000; 55(11): B533–B536.


https://doi.org/10.1093/gerona/55.11.b533. PMID: 11078086.


15. Lin S., Nascimento E.M., Gajera C.R. et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature. 2018; 556(7700): 244–48.


https://doi.org/10.1038/s41586-018-0004-7. PMID: 29618815. PMCID: PMC5895494.


16. Bangru S., Kalsotra A. Cellular and molecular basis of liver regeneration. Semin Cell Dev Biol. 2020; 100: 74–87.


https://doi.org/10.1016/j.semcdb.2019.12.004. PMID: 31980376. PMCID: PMC7108750.


17. Wang J., Zhang W., Liu X. et al. Epigenome-wide analysis of aging effects on liver regeneration. BMC Biol. 2023; 21(1): 30.


https://doi.org/10.1186/s12915-023-01533-1. PMID: 36782243. PMCID: PMC9926786.


18. Abudahab S., Kronfol M.M., Dozmorov M.G. et al. Genome-wide analysis of hepatic DNA methylation reveals impact of epigenetic aging on xenobiotic metabolism and transport genes in an aged mouse model. Geroscience. 2024.


https://doi.org/10.1007/s11357-024-01137-9. PMID: 38558216.


19. Thompson R.F., Atzmon G., Gheorghe C. et al. Tissue-specific dysregulation of DNA methylation in aging. Aging Cell. 2010; 9(4): 506–18.


https://doi.org/10.1111/j.1474-9726.2010.00577.x. PMID: 20497131. PMCID: PMC2935175.


20. Bacalini M.G., Franceschi C., Gentilini D. et al. Molecular aging of human liver: An epigenetic/transcriptomic signature. J Gerontol A Biol Sci Med Sci. 2019; 74(1): 1–8.


https://doi.org/10.1093/gerona/gly048. PMID: 29554203.


21. Medvedev Z.A., Medvedeva M.N. Age-related changes of the H1 and H1(0) histone variants in murine tissues. Exp Gerontol. 1990; 25(2): 189–200.


https://doi.org/10.1016/0531-5565(90)90050-c. PMID: 2164486.


22. Bochkis I.M., Przybylski D., Chen J., Regev A. Changes in nucleosome occupancy associated with metabolic alterations in aged mammalian liver. Cell Rep. 2014; 9(3): 996–1006.


https://doi.org/10.1016/j.celrep.2014.09.048. PMID: 25437555. PMCID: PMC4250828.


23. Whitton H., Singh L.N., Patrick M.A. et al. Changes at the nuclear lamina alter binding of pioneer factor Foxa2 in aged liver. Aging Cell. 2018; 17(3): e12742.


https://doi.org/10.1111/acel.12742. PMID: 29484800. PMCID: PMC5946061.


24. Sleiman M.B., Jha P., Houtkooper R. et al. The gene-regulatory footprint of aging highlights conserved central regulators. Cell Rep. 2020; 32(13): 108203.


https://doi.org/10.1016/j.celrep.2020.108203. PMID: 32997995. PMCID: PMC7527782.


25. Hillje R., Luzi L., Amatori S. et al. Time makes histone H3 modifications drift in mouse liver. Aging (Albany NY). 2022; 14(12): 4959–75.


https://doi.org/10.18632/aging.204107. PMID: 35687897. PMCID: PMC9271290.


26. Chen Y., Bravo J.I., Son J.M. et al. Remodeling of the H3 nucleosomal landscape during mouse aging. Transl Med Aging. 2020; 4: 22–31.


https://doi.org/10.1016/j.tma.2019.12.003. PMID: 32462102. PMCID: PMC7252472.


27. Giordani G., Cavaliere V., Gargiulo G. et al. Retrotransposons down- and up-regulation in aging somatic tissues. Cells. 2021; 11(1): 79.


https://doi.org/10.3390/cells11010079. PMID: 35011640. PMCID: PMC8750722.


28. Miyata K., Imai Y., Hori S. et al. Pericentromeric noncoding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer. Proc Natl Acad Sci U S A. 2021; 118(35): e2025647118.


https://doi.org/10.1073/pnas.2025647118. PMID: 34426493. PMCID: PMC8536346.


29. Huang Y., Yang X., Meng Y. et al. The hepatic senescence-associated secretory phenotype promotes hepatocarcinogenesis through Bcl3-dependent activation of macrophages. Cell Biosci. 2021; 11(1): 173.


https://doi.org/10.1186/s13578-021-00683-5. PMID: 34530917. PMCID: PMC8447591.


30. Cheng N., Kim K.-H., Lau L.F. Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight. 2022; 7(14): e158207.


https://doi.org/10.1172/jci.insight.158207. PMID: 35708907. PMCID: PMC9431681.


31. Smith-Vikos T., Slack F.J. MicroRNAs and their roles in aging. J Cell Sci. 2012; 125(Pt 1): 7–17.


https://doi.org/10.1242/jcs.099200. PMID: 22294612. PMCID: PMC3269020.


32. Zhang S., Duan J., Du Y. et al. Long non-coding RNA signatures associated with liver aging in senescence-accelerated mouse prone 8 model. Front Cell Dev Biol. 2021; 9: 698442.


https://doi.org/10.3389/fcell.2021.698442. PMID: 34368149. PMCID: PMC8339557.


33. Mimura S., Iwama H., Kato K. et al. Profile of microRNAs associated with aging in rat liver. Int J Mol Med. 2014; 34(4): 1065–72.


https://doi.org/10.3892/ijmm.2014.1892. PMID: 25118807.


34. Hsu S.-H., Delgado E.R., Otero P.A. et al. MicroRNA-122 regulates polyploidization in the murine liver. Hepatology. 2016; 64(2): 599–615.


https://doi.org/10.1002/hep.28573. PMID: 27016325. PMCID: PMC4956491.


35. Ding C., Yu Z., Sefik E. et al. A Treg-specific long noncoding RNA maintains immune-metabolic homeostasis in aging liver. Nat Aging. 2023; 3(7): 813–28.


https://doi.org/10.1038/s43587-023-00428-8. PMID: 37277640.


36. White R.R., Milholland B., MacRae S.L. et al. Comprehensive transcriptional landscape of aging mouse liver. BMC Genomics. 2015; 16: 899.


https://doi.org/10.1186/s12864-015-2061-8. PMID: 26541291. PMCID: PMC4636074.


37. Bhadra M., Howell P., Dutta S. et al. Alternative splicing in aging and longevity. Hum Genet. 2020; 139(3): 357–69.


https://doi.org/10.1007/s00439-019-02094-6. PMID: 31834493. PMCID: PMC8176884.


38. Wang K., Wu D., Zhang H. et al. Comprehensive map of age-associated splicing changes across human tissues and their contributions to age-associated diseases. Sci Rep. 2018; 8(1): 10929.


https://doi.org/10.1038/s41598-018-29086-2. PMID: 30026530. PMCID: PMC6053367.


39. Okada N., Oshima K., Iwasaki Y. et al. Intron retention as a new pre-symptomatic marker of aging and its recovery to the normal state by a traditional Japanese multi-herbal medicine. Gene. 2021; 794: 145752.


https://doi.org/10.1016/j.gene.2021.145752. PMID: 34082065.


40. Pabis K., Barardo D., Sirbu O. et al. A concerted increase in readthrough and intron retention drives transposon expression during aging and senescence. Elife. 2024; 12: RP87811.


https://doi.org/10.7554/eLife.87811. PMID: 38567944. PMCID: PMC10990488.


41. De Cecco M., Criscione S.W., Peterson A.L. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY). 2013; 5(12): 867–83.


https://doi.org/10.18632/aging.100621. PMID: 24323947. PMCID: PMC3883704.


42. Chaturvedi P., Neelamraju Y., Arif W. et al. Uncovering RNA binding proteins associated with age and gender during liver maturation. Sci Rep. 2015; 5: 9512.


https://doi.org/10.1038/srep09512. PMID: 25824884. PMCID: PMC4379467.


43. Taylor R.C., Dillin A. Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol. 2011; 3(5): a004440.


https://doi.org/10.1101/cshperspect.a004440. PMID: 21441594. PMCID: PMC3101847.


44. Murshid A., Eguchi T., Calderwood S.K. Stress proteins in aging and life span. Int J Hyperthermia. 2013; 29(5): 442–47.


https://doi.org/10.3109/02656736.2013.798873. PMID: 23742046. PMCID: PMC4083487.


45. Hunt N.J., Kang S.W.S., Lockwood G.P. et al. Hallmarks of aging in the liver. Comput Struct Biotechnol J. 2019; 17: 1151–61.


https://doi.org/10.1016/j.csbj.2019.07.021. PMID: 31462971. PMCID: PMC6709368.


46. Denk H., Abuja P.M., Zatloukal K. Mallory-Denk bodies and hepatocellular senescence: A causal relationship? Virchows Arch. 2024; 484(4): 637–44.


https://doi.org/10.1007/s00428-024-03748-1. PMID: 38289501. PMCID: PMC11063002.


47. Cuanalo-Contreras K., Schulz J., Mukherjee A. et al. Extensive accumulation of misfolded protein aggregates during natural aging and senescence. Front Aging Neurosci. 2023; 14: 1090109.


https://doi.org/10.3389/fnagi.2022.1090109. PMID: 36778589. PMCID: PMC9909609.


48. Dasuri K., Nguyen A., Zhang L. et al. Comparison of rat liver and brain proteasomes for oxidative stress-induced inactivation: Influence of ageing and dietary restriction. Free Radic Res. 2009; 43(1): 28–36.


https://doi.org/10.1080/10715760802534812. PMID: 19048434. PMCID: PMC2735019.


49. Scrofano M.M., Shang F., Nowell T.R. Jr. et al. Aging, calorie restriction and ubiquitin-dependent proteolysis in the livers of Emory mice. Mech Ageing Dev. 1998; 101(3): 277–96.


https://doi.org/10.1016/s0047-6374(97)00178-4. PMID: 9622231.


50. Shibatani T., Nazir M., Ward W.F. Alteration of rat liver 20S proteasome activities by age and food restriction. J Gerontol A Biol Sci Med Sci. 1996; 51(5): B316–B322.


https://doi.org/10.1093/gerona/51a.5.b316. PMID: 8808979.


51. Xu F., Hua C., Tautenhahn H.-M. et al. The role of autophagy for the regeneration of the aging liver. Int J Mol Sci. 2020; 21(10): 3606.


https://doi.org/10.3390/ijms21103606. PMID: 32443776. PMCID: PMC7279469.


52. Zhang C., Cuervo A.M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med. 2008; 14(9): 959–65.


https://doi.org/10.1038/nm.1851. PMID: 18690243. PMCID: PMC2722716.


53. Aman Y., Schmauck-Medina T., Hansen M. et al. Autophagy in healthy aging and disease. Nat Aging. 2021; 1(8): 634–50.


https://doi.org/10.1038/s43587-021-00098-4. PMID: 34901876. PMCID: PMC8659158.


54. Krause G.J., Diaz A., Jafari M. et al. Reduced endosomal microautophagy activity in aging associates with enhanced exocyst-mediated protein secretion. Aging Cell. 2022; 21(10): e13713.


https://doi.org/10.1111/acel.13713. PMID: 36116133. PMCID: PMC9577956.


55. Donati A., Recchia G., Cavallini G., Bergamini E. Effect of aging and anti-aging caloric restriction on the endocrine regulation of rat liver autophagy. J Gerontol A Biol Sci Med Sci. 2008; 63(6): 550–55.


https://doi.org/10.1093/gerona/63.6.550. PMID: 18559627.


56. Lozada-Delgado J.G., Torres-Ramos C.A., Ayala-Peña S. Aging, oxidative stress, mitochondrial dysfunction, and the liver. In: Aging: Oxidative stress and dietary antioxidants, 2nd ed. Preedy V.R., Patel V.B. (eds). Cambridge (MA): Academic Press. 2020: 37–46.


https://doi.org/10.1016/B978-0-12-818698-5.00004-3.


57. Sastre J., Pallardó F.V., Plá R. et al. Aging of the liver: Age-associated mitochondrial damage in intact hepatocytes. Hepatology. 1996; 24(5): 1199–1205.


https://doi.org/10.1002/hep.510240536. PMID: 8903398.


58. Amorim J.A., Coppotelli G., Rolo A.P. et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol. 2022; 18(4): 243–58.


https://doi.org/10.1038/s41574-021-00626-7. PMID: 35145250. PMCID: PMC9059418.


59. Twarda-Clapa A., Olczak A., Białkowska A.M., Koziołkiewicz M. Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022; 11(8): 1312.


https://doi.org/10.3390/cells11081312. PMID: 35455991. PMCID: PMC9029922.


60. Wan J., Wu X., Chen H. et al. Aging-induced aberrant RAGE/PPARα axis promotes hepatic steatosis via dysfunctional mitochondrial β oxidation. Aging Cell. 2020; 19(10): e13238.


https://doi.org/10.1111/acel.13238. PMID: 32936538. PMCID: PMC7576254.


61. Mulligan J.D., Gonzalez A.A., Kumar R. et al. Aging elevates basal adenosine monophosphate-activated protein kinase (AMPK) activity and eliminates hypoxic activation of AMPK in mouse liver. J Gerontol A Biol Sci Med Sci. 2005; 60(1): 21–27.


https://doi.org/10.1093/gerona/60.1.21. PMID: 15741278.


62. Zhong H.-H., Hu S.-J., Yu B. et al. Apoptosis in the aging liver. Oncotarget. 2017; 8(60): 102640–52.


https://doi.org/10.18632/oncotarget.21123. PMID: 29254277. PMCID: PMC5731987.


63. Mohammed S., Thadathil N., Selvarani R. et al. Necroptosis contributes to chronic inflammation and fibrosis in aging liver. Aging Cell. 2021; 20(12): e13512.


https://doi.org/10.1111/acel.13512. PMID: 34761505. PMCID: PMC8672775.


64. Lu Y., Hu J., Chen L. et al. Ferroptosis as an emerging therapeutic target in liver diseases. Front Pharmacol. 2023; 14: 1196287.


https://doi.org/10.3389/fphar.2023.1196287. PMID: 37256232. PMCID: PMC10225528.


65. Zhou J., Qiu J., Song Y. et al. Pyroptosis and degenerative diseases of the elderly. Cell Death Dis. 2023; 14(2): 94.


https://doi.org/10.1038/s41419-023-05634-1. PMID: 36755014. PMCID: PMC9908978.


66. Цыркунов В.М. Керимова С.Ш., Черняк С.А. Партанатоз и онкогенез печени. Гепатология и гастроэнтерология. 2023; 7(2): 98–104. (Tsyrkunov V.M., Kerimova S.Sh., Chernyak S.A. Parthanatos and liver oncogenesis. Gepatologiya i gastroenterologiya = Hepatology and Gastroenterology. 2023; 7(2): 98–104 (In Russ.)).


https://doi.org/10.25298/2616-5546-2023-7-2-98-104. EDN: WBBNWQ.


67. Деев Р.В., Билялов А.И., Жампеисов Т.М. Современные представления о клеточной гибели. Гены и клетки. 2018; 13(1): 6–19. (Deev R.V., Bilyalov A.I., Zhampeisov T.M. Modern ideas about cell death. Geny i kletki = Genes & Cells. 2018; 13(1): 6–19 (In Russ.)).


https://doi.org/10.23868/201805001. EDN: YNQDVJ.


68. Sabbatini M., Bona E., Novello G. et al. Aging hampers neutrophil extracellular traps (NETs) efficacy. Aging Clin Exp Res. 2022; 34(10): 2345–53.


https://doi.org/10.1007/s40520-022-02201-0. PMID: 35920993. PMCID: PMC9637667.


69. Yang Y., Yu S., Lv C., Tian Y. NETosis in tumour microenvironment of liver: From primary to metastatic hepatic carcinoma. Ageing Res Rev. 2024; 97: 102297.


https://doi.org/10.1016/j.arr.2024.102297. PMID: 38599524.


70. Toyama T., Sasaki Y., Horimoto M. et al. Ninjurin1 increases p21 expression and induces cellular senescence in human hepatoma cells. J Hepatol. 2004; 41(4): 637–43.


https://doi.org/10.1016/j.jhep.2004.06.027. PMID: 15464245.


71. Higgins P.J. Hepatocyte cell cycle transitions during the age-related development of type I hepatic adenomas in the genetically predisposed C3H mouse. AGE. 1986; 9: 71–78.


https://doi.org/10.1007/BF02432271.


72. Iakova P., Awad S.S., Timchenko N.A. Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrest. Cell. 2003; 113(4): 495–506.


https://doi.org/10.1016/s0092-8674(03)00318-0. PMID: 12757710.


73. Fafian-Labora J.A., O’Loghlen A. Classical and nonclassical intercellular communication in senescence and ageing. Trends Cell Biol. 2020; 30(8): 628–39.


https://doi.org/10.1016/j.tcb.2020.05.003. PMID: 32505550.


74. Cheng N., Kim K.-H., Lau L.F. Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight. 2022; 7(14): e158207.


https://doi.org/10.1172/jci.insight.158207. PMID: 35708907. PMCID: PMC9431681.


75. Jannone G., de Magnée C., Tambucci R. et al. Premature senescence of the liver in Alagille patients. PLoS One. 2023; 18(4): e0285019.


https://doi.org/10.1371/journal.pone.0285019. PMID: 37099537. PMCID: PMC10132695.


76. Qian L., Zhang H., Gu Y. et al. Reduced production of laminin by hepatic stellate cells contributes to impairment in oval cell response to liver injury in aged mice. Aging (Albany NY). 2018; 10(12): 3713–35.


https://doi.org/10.18632/aging.101665. PMID: 30513510. PMCID: PMC6326669.


77. Mitaka T., Ichinohe N., Tanimizu N. “Small hepatocytes” in the liver. Cells. 2023; 12(23): 2718.


https://doi.org/10.3390/cells12232718. PMID: 38067145. PMCID: PMC10705974.


78. Cheng Y., Wang X., Wang B. et al. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice. Aging (Albany NY). 2017; 9(5): 1359–74.


https://doi.org/10.18632/aging.101232. PMID: 28458256. PMCID: PMC5472737.


79. Kholodenko I.V., Yarygin K.N. Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases. Biomed Res Int. 2017; 2017: 8910821.


https://doi.org/10.1155/2017/8910821. PMID: 28210629. PMCID: PMC5292184.


About the Autors


Veronika A. Prikhodko, PhD (Biology), senior lecturer of the Department of pharmacology and clinical pharmacology, Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of Russia. Address: 197022, Saint Petersburg, 14, lit. A Professora Popova St.
E-mail: veronika.prihodko@pharminnotech.com
ORCID: https://orcid.org/0000-0002-4690-1811
Sergey V. Okovityi, MD, Dr. Sci. (Medicine), professor, head of the Department of pharmacology and clinical pharmacology of the Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of Russia, professor of the scientific, clinical and educational center for gastroenterology and hepatology, Saint Petersburg State University. Address: 197022, Saint Petersburg, 14, lit. A Professora Popova St.
E-mail: sergey.okovity@pharminnotech.com
ORCID: https://orcid.org/0000-0003-4294-5531


Similar Articles


Бионика Медиа