Role of free radical oxidation, hypoxia and their correction in COVID-19 pathogenesis


DOI: https://dx.doi.org/10.18565/therapy.2020.5.187-194

Schulkin A.V., Filimonova A.A.

Academician I.P. Pavlov Ryazan State Medical University of the Ministry of Healthcare of Russia
In following review, the pathogenesis of coronavirus disease of 2019 (COVID-19), the features of the SARS-CoV-2 virus, are shown in peculiarities. Due to big importance of oxidative stress and hypoxia in the development of this infection paid to, it has been suggested that the use of antioxidants and antihypoxants in the complex treatment of COVID-19 may be useful and significantly improve the course of the disease.
Keywords: COVID-19, coronaviruses, oxidative stress, hypoxia

Literature



  1. Yang X., Yu Y., Xu J. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8(5): 475–81. doi: https://doi.org/10. 1016/S2213-2600(20)30079-5.

  2. Banerjee A., Kulcsar K., Misra V. et al. Bats and Coronaviruses. Viruses. 2019; 11(1): 41. doi: 10.3390/v11010041.

  3. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033–34. doi: 10.1016/S0140-6736(20)30628-0.

  4. Bosch B.J., van der Zee R., de Haan C.A., Rottier P.J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003; 77(16): 8801–11. doi: 10.1128/jvi.77.16.8801-8811.2003.

  5. Li W., Moore M.J., Vasilieva N. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426(6965): 450–54. doi: 10.1038/nature02145.

  6. Wrapp D., Wang N., Corbett K.S. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483): 1260–63. doi: 10.1126/science.abb2507.

  7. South A.M., Diz D.I., Chappell M.C. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020; 318(5): H1084–H1090. doi: 10.1152/ajpheart.00217.2020.

  8. Деев Р.В. Клеточная трансплантация в программе лечения COVID-19: пересадка стволовых стромальных (мезенхимальных) клеток. Гены и Клетки. 2020; 2: 9–17. [Deev R.V. Cell transplantation in the treatment program COVID-19: transplantation of stem stromal (mesenchymal) cells. Geny i kletki. 2020; 2: 9–17 (In Russ.)]. doi: 10.23868/202004012.

  9. Sims A.C., Baric R.S., Yount B. et al. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J Virol. 2005; 79: 15511–24. doi:10.1128/JVI.79.24.15511-15524.2005.

  10. Mason R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020; 55(4): 2000607. doi: 10.1183/13993003.00607-2020.

  11. Li G., Fan Y., Lai Y. et al. Coronavirus infections and immune responses. J Med Virol. 2020; 92(4): 424–32. doi: 10.1002/jmv.25685.

  12. Hancock A.S., Stairiker C.J., Boesteanu A.C. et al. influenza A virus infection reveals in vivo Wnt pathway downregulation. J Virol. 2018; 92: e01325–18. doi: 10.1128/JVI.01325-18.

  13. 13. Xie J., Covassin N., Fan Z. et al. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clin Proc. 2020; S0025–6196(20)30367-0. doi: 10.1016/j.mayocp.2020.04.006.

  14. 14. Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine (5 ed.) Clarendon Press. Oxford Published in 2015 by Oxford University Press; 2015.

  15. van den Brand J.M.A., Haagmans B.L., van Riel D. et al. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol. 2014; 151(1): 83–112. doi: 10.1016/j.jcpa.2014.01.004.

  16. Khomich O.A., Kochetkov S.N., Bartosch B., Ivanov A.V. Redox biology of respiratory viral infections. Viruses. 2018; 10(8): 392. doi: 10.3390/v10080392.

  17. Bedard K., Krause K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007; 87(1): 245–313. doi: 10.1152/physrev.00044.2005.

  18. To E.E., Broughton B.R., Hendricks K.S. et al. Influenza A virus and TLR7 activation potentiate NOX2 oxidase-dependent ROS production in macrophages. Free Radic Res. 2014; 48(8): 940–47. doi: 10.3109/10715762.2014.927579.

  19. Fink K., Duval A., Martel A. et al. Dual role of NOX2 in respiratory syncytial virus- and sendai virus-induced activation of NF-κB in airway epithelial cells. J Immunol. 2008, 180, 6911–22. doi: 10.4049/jimmunol.180.10.6911.

  20. Kaul P., Biagioli M.C., Singh I., Turner R.B. Rhinovirus-induced oxidative stress and interleukin-8 laboration involves p47-phox but is independent of attachment to intercellular adhesion molecule-1 and viral replication. J Infect Dis. 2000; 181(6): 1885–90. doi: 10.1086/315504.

  21. Snelgrove R.J., Edwards L., Rae A.J., Hussell T. An absence of reactive oxygen species improves the resolution of lung influenza infection. Eur J Immunol. 2006; 36: 1364–73. doi: 10.1002/eji.200635977.

  22. Amatore D., Sgarbanti R., Aquilano K. et al. Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS. Cell. Microbiol. 2015; 17(1): 131–45. doi: 10.1111/cmi.12343.

  23. Strengert M., Jennings R., Davanture S. et al. Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal. 2014; 20(17): 2695–709. doi: 10.1089/ars.2013.5353.

  24. Oda T., Akaike T., Hamamoto T. et al. Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 1989; 244: 974–76. doi: 10.1126/science.2543070.

  25. Cantu-Medellin N., Kelley E.E. Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation. Redox Biol. 2013; 1: 353–58. doi: 10.1016/j.redox.2013.05.002.

  26. Papi A., Contoli M., Gasparini P. et al. Role of xanthine oxidase activation and reduced glutathione depletion in rhinovirus induction of inflammation in respiratory epithelial cells. J Biol Chem. 2008; 283: 28595–606. doi: 10.1074/jbc.M805766200.

  27. Kim S., Kim M.J., Park D.Y. et al. Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium. Antivir. Res. 2015; 119: 78–83. doi: 10.1016/j.antiviral.2015.04.011.

  28. Berg R.M.G., Moller K., Bailey D.M. Neuro-oxidative-nitrosative stress in sepsis. J Cereb Blood Flow Metab. 2011; 31(7): 1532–44. doi: 10.1038/jcbfm.2011.48.

  29. Akaike T., Okamoto S., Sawa T. et al. 8-nitroguanosine formation in viral pneumonia and its implication for pathogenesis. Proc Natl Acad Sci USA. 2003; 100: 685–90. doi: 10.1073/pnas.0235623100.

  30. Lin C.W., Lin K.H., Hsieh T.H. et al. Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunol Med Microbiol. 2006; 46: 375–80. doi: 10.1111/j.1574-695X.2006.00045.x.

  31. Padhan K., Minakshi R., Towheed M.A.B. et al. Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation J Gen Virol. 2008; 89(Pt 8): 1960–69. doi: 10.1099/vir.0.83665-0.

  32. Воронина Т.А. Антиоксиданты/антигипоксанты – недостающий пазл эффективной патогенетической терапии пациентов с COVID-19. Инфекционные болезни. 2020; 2: 97–102. [Voronina T.A. Antioxidants/antihypoxants: the missing puzzle piece in effective pathogenetic therapy for COVID-19. Infektsionnye bolezni. 2020; 2: 97–102 (In Russ.)]. doi: 10.20953/1729-9225-2020-2-97-102.

  33. Rajagopalan S., Kurz S., Munzel T. et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996; 97: 1916–23. doi: 10.1172/JCI118623.

  34. Zhang G.X., Lu X.M., Kimura S., Nishiyama A. Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. Cardiovasc Res. 2007; 76: 204–12. doi: 10.1016/j.cardiores.2007.07.014.

  35. Chary M.A., Barbuto A.F., Izadmehr S. et al. COVID-19: therapeutics and their toxicities. Journal of Medical Toxicology. J Med Toxicol. 2020; 1–11. doi: 10.1007/s13181-020-00777-5.

  36. Cheng R.Z. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med Drug Discov. 2020; 5: 100028. doi: 10.1016/j.medidd.2020.100028.

  37. Horowitz R.I., Freeman P.R., Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir Med Case Rep. 2020; 30: 101063. doi: 10.1016/j.rmcr.2020.101063.

  38. Воронина Т.А. Мексидол: спектр фармакологических эффектов. Журнал неврологии и психиатрии им. С.С. Корсакова. 2012; 112(12): 86–90. [Voronina T.A. Spectrum of pharmacological effects of Mexidol. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2012; 12: 86–90 (In Russ.)].

  39. Щулькин А.В. Современные представления об антигипоксическом и антиоксидантном эффектах Мексидола. Журнал неврологии и психиатрии им. C.C. Корсакова. 2018; 12–2: 87–93. [Shchulkin A.V. A modern concept of antihypoxic and antioxidant effects of Mexidol. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2018; 12–2: 87–93 (In Russ.)]. doi: 10.17116/jnevro201811812287.

  40. Щулькин А.В. Влияние Мексидола на развитие феномена эксайтотоксичности нейронов in vitro. Журнал неврологии и психиатрии им. С.С. Корсакова. 2012; 2: 35–39. [Shchulkin A.V. Effect of Mexidol on the development of the phenomenon of the neuronal excitotoxicity in vitro. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2012; 2: 35–39 (In Russ.)].

  41. Федин А.И. Неврологическая клиническая патология, ассоциированная с COVID-19. Доступ: http://neuronews.ru/index.php/rubriki/glavnaya-tema/item/3701-nevrologicheskaya-klinicheskaya-patologiya-assotsiirovannaya-s-covid-19 (дата обращения – 01.08.2020). [Fedin A.I. Neurological clinical pathology associated with COVID-19. Available at: http://neuronews.ru/index.php/rubriki/glavnaya-tema/item/3701-nevrologicheskaya-klinicheskaya-patologiya-assotsiirovannaya-s-covid-19 (date of access – 01.08.2020) (In Russ.)].


About the Autors


Alexey V. Schulkin, PhD, associate professor, associate professor of Department of pharmacology with a course of pharmacy of Academician I.P. Pavlov Ryazan State Medical University of the Ministry of Healthcare of Russia. Address: 390000, Ryazan, 9 Vysokovol`tnaya Str. Tel.: +7 (920) 952-00-24. E-mail: alekseyshulkin@rambler.ru
Anastasia A. Filimonova, PhD, associate professor of the Department of nursing of Academician I.P. Pavlov Ryazan State Medical University of the Ministry of Healthcare of Russia. Address: 390000, Ryazan, 9 Vysokovol`tnaya Str. Tel.: +7 (920) 952-00-24. E-mail: anastasiyamolyanova2011@yandex.ru


Бионика Медиа