Endocrine system vitamin-hormone D and COVID-19


DOI: https://dx.doi.org/10.18565/therapy.2020.8.105-112

Karonova Т.L., Golovatyuk К.А., Andreeva А.Т., Vashukova М.А., Bykova Е.S., Shlyakhto Е.V.

1) National Medical Research Centre named after V.A. Almazov of the Ministry of Healthcare of Russia, Saint-Petersburg; 2) I.P. Pavlov First State Medical University of the Ministry of Healthcare of Russia, Saint-Petersburg; 3) S.P. Botkin Clinical Infectious Hospital, Saint-Petersburg
Endocrine disorders are quite often observed in patients with a new coronavirus infection, they are ones of the known factors that worsen the infectious process, while, they might also be directly related to SARS-CoV-2. Given the immunomodulating properties of vitamin D, it is of interest to consider the deficiency of this nutrient as an additional factor that affects the risk of infection as well as the severity of COVID-19 clinical manifestations. This article presents the results of recent publications devoted to assessing the mechanisms of the vitamin D effect on the immune system and the effect of adding cholecalciferol to the main therapy in acute respiratory viral infections, including COVID-19, which will be of interest to endocrinologists and related specialists.

Literature



  1. Zhu N., Zhang D., Wang W. et al. A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med. 2020; 382(8): 727–33. doi: 10.1056/NEJMoa2001017.

  2. Grant W.B., Lahore H., McDonnell S.L. et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020; 12(4): 988. doi:10.3390/nu12040988.

  3. Smati S., Tramunt B., Wargny M. et al. Relationship between obesity and severe COVID-19 outcomes in patients with type 2 diabetes: results from the CORONADO study. Diabetes Obes Metab. 2020; 10.1111/dom.14228. doi: 10.1111/dom.14228.

  4. Holick M.F. Vitamin D deficiency. N Engl J Med. 2007; 357(3): 266–81. doi: 10.1056/NEJMra070553.

  5. Beard J.A., Bearden A., Striker R. Vitamin D and the anti-viral state. J Clin Virol. 2011; 50(3): 194–200. doi: 10.1016/j.jcv.2010.12.006.

  6. Hewison M. An update on vitamin D and human immunity. Clin Endocrinol. 2012; 76(3): 315–25. doi: 10.1111/j.1365-2265.2011.04261.x.

  7. Greiller C.L., Martineau A.R. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients. 2015; 7(6): 4240–70. doi: 10.3390/nu7064240.

  8. Wei R., Christakos S. Mechanisms underlying the regulation of innate and adaptive immunity by vitamin D. Nutrients. 2015; 7(10): 8251–60. doi: 10.3390/nu7105392.

  9. Coussens A.K. The role of UV radiation and vitamin D in the seasonality and outcomes of infectious disease. Photochem Photobiol Sci. 2017; 16(3): 314–38. doi: 10.1039/c6pp00355a.

  10. Lang P.O., Aspinall R. Vitamin D status and the host resistance to infections: what it is currently (not) understood. Clin Ther. 2017; 39(5): 930–45. doi: 10.1016/j.clinthera.2017.04.004.

  11. Gruber-Bzura B.M. Vitamin D and influenza-prevention or therapy? Int J Mol Sci. 2018; 19(8): 2419. doi: 10.3390/ijms19082419.

  12. Rondanelli M., Miccono A., Lamburghini S. et al. Self-care for common colds: the pivotal role of vitamin D, vitamin C, zinc, and echinacea in three main immune interactive clusters (physical barriers, innate and adaptive immunity) involved during an episode of common colds-practical advice on dosages and on the time to take these nutrients/botanicals in order to prevent or treat common colds. Evid Based Complement Alternat Med. 2018; 2018: 5813095. doi: 10.1155/2018/5813095.

  13. Gombart A.F., Pierre A., Maggini S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients. 2020; 12(1): 236. doi: 10.3390/nu12010236.

  14. Hewison M., Freeman L., Hughes S. et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J Immunol. 2003; 170(11): 5382–90. doi: 10.4049/jimmunol.170.11.5382.

  15. Ginde A., Mansbach J., Camargo C. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2009; 169(4): 384–90. doi: 10.1001/archinternmed.2008.560.

  16. Adams J.S., Ren S., Liu P.T. et al. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J Immunol. 2009; 82(7): 4289–95. doi: 10.4049/jimmunol.0803736.

  17. Liu P.T., Stenger S., Li H., Wenzel L. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006; 311(5768): 1770–73. doi: 10.1126/science.1123933.

  18. Barlow P.G., Svoboda P., Mackellar A. et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE. 2011; 6(10): e25333. doi: 10.1371/journal.pone.0025333.

  19. Agier J., Efenberger M., Brzezinska-Blaszczyk E. Cathelicidin impact on inflammatory cells. Cent Eur J Immunol. 2015; 40(2): 225–35. doi: 10.5114/ceji.2015.51359.

  20. Cantorna M.T., Snyder L., Lin Y.D., Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015: 7(4): 3011–21. doi: 10.3390/nu7043011.

  21. Pham H., Rahman A., Majidi A. et al. Acute respiratory tract infection and 25-hydroxyvitamin D concentration: a systematic review and meta-analysis. Int J Environ Res Public Health. 2019; 16(17): 3020. doi: 10.3390/ijerph16173020.

  22. Zhou J., Du J., Huang L. et al. Preventive effects of vitamin D on seasonal influenza a in infants: a multicenter, randomized, open, controlled clinical trial. Pediatr Infect Dis J. 2018; 37(8): 749–54. doi: 10.1097/INF.0000000000001890.

  23. Kalil A.C., Thomas P.G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit Care. 2019; 23(1): 258. doi: 10.1186/s13054-019-2539-x.

  24. Vasarhelyi B., Satori A., Olajos F. et al. Low vitamin D levels among patients at Semmelweis University: retrospective analysis during a one-year period. Orv Hetil. 2011; 152(32): 1272–77. doi: 10.1556/OH.2011.29187.

  25. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. doi: 10.1016/S0140-6736(20)30183-5.

  26. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41(2): 145–151. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003.

  27. Hope-Simpson R.E. The role of season in the epidemiology of influenza. J Hyg (Lond). 1981; 86(1): 35–47. doi: 10.1017/s0022172400068728.

  28. Cannell J.J., Vieth R., Umhau J.C. et al. Epidemic influenza and vitamin D. Epidemiol Infect. 2006; 134(6): 1129–40. doi: 10.1017/S0950268806007175.

  29. Kroll M.H., Bi C., Garber C.C. et al. Temporal relationship between vitamin D status and parathyroid hormone in the United States. PLoS ONE. 2015; 10(3): e0118108. doi: 10.1371/journal.pone.0118108.

  30. Каронова Т.Л., Гринева Е.Н., Никитина И.Л. с соавт. Уровень обеспеченности витамином D жителей Северо-западного региона РФ (г. Санкт-Петербург и г. Петрозаводск). Остеопороз и остеопатии. 2013; 3: 3–7. [Karonova T.L., Grineva E.N., Nikitina I.L. et al. The prevalence of vitamin D deficiency in the Northwestern region of the Russian Federation among the residents of St. Petersburg and Petrozavodsk. Osteoporoz i osteopatii. 2013; 3: 3–7 (In Russ.)]. doi: https://doi.org/10.14341/osteo201333-7.

  31. Петрушкина А.А., Пигарова Е.А., Рожтинская Л.Я. Эпидемиология дефицита витамина D в Российской Федерации. Остеопороз и остеопатии. 2018; 3: 15–20. [Petrushkina A.A., Pigarova E.A., Rozhinskaya L.Y. The prevalence of vitamin D deficiency in Russian Federation. Osteoporoz i osteopatii. 2018; 3: 15–20 (In Russ.)]. doi: 10.14341/osteo10038.

  32. Grineva E., Karonova T., Micheeva E. et al. Vitamin D deficiency is a risk factor for obesity and diabetes type 2 in women at late reproductive age. Aging. 2013; 5(7): 575–81. doi: 10.18632/aging.100582.

  33. Степанова А.П., Каронова Т.Л. Эффект терапии витамином D на маркеры воспаления у больных сахарным диабетом 2 типа и диабетической периферической нейропатией. Сахарный диабет. 2019; 5: 417–427. [Stepanova A.P., Karonova T.L. The effect of vitamin D therapy on inflammatory markers in patients with type 2 diabetes mellitus and diabetic peripheral polyneuropathy. Sakharniy diabet. 2019; 5: 417–427 (In Russ.)]. doi: 10.14341/DM10316.

  34. Никитина И.Л., Каронова Т.Л., Гринева Е.Н. Дефицит витамина Д и здоровье. Артериальная гипертензия. 2010; 3: 277–281. [Nikitina I.L., Karonova T.L., Grineva E.N. Vitamin D deficiency and health. Arterial'naya gipertenziya. 2010; 3: 277–281 (In Russ.)].

  35. Zhao Y., Zhao Z., Wang Y. et al. Single-Cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020; 202(5): 756–59. doi: 10.1101/2020.01.26.919985.

  36. Bombardini T., Picano E. Angiotensin-converting enzyme 2 as the molecular bridge between epidemiologic and clinical features of COVID-19. Can J Cardiol. 2020; 36(5): 784.e1–784.e2. doi: 10.1016/j.cjca.2020.03.026.

  37. Rolf J.D. Clinical characteristics of COVID-19 in China. N Engl J Med. 2020; 382(19): 1860. doi: 10.1056/NEJMc2005203.

  38. Bavishi C., Maddox T.M., Messerli F.H. Coronavirus Disease 2019 (COVID-19) infection and renin angiotensin system blockers. JAMA Cardiol. 2020; 5(7): 745–47. doi: 10.1001/jamacardio.2020.1282.

  39. Kumar D., Gupta P., Banerjee D. Letter: does vitamin D have a potential role against COVID-19? Aliment Pharmacol Ther. 2020; 52(2): 409–11. doi: 10.1111/apt.1580.

  40. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061–69. doi: 10.1001/jama.2020.1585.

  41. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020; 395(10229): 1054–62. doi: 10.1016/S0140-6736(20)30566-3.

  42. ClinicalTrials.gov. Studies for vitamin D, COVID19. URL: https://clinicaltrials.gov/ct2/results?cond=COVID19&term=vitamin+D&cntry=&state=&city=&dist= (date of access – 06.11.2020).

  43. Mercola J., Grant W., Wagner C. Evidence regarding vitamin D and risk of COVID-19 and its severity. Nutrients. 2020; 12(11): 3361. doi: https://doi.org/10.3390/nu12113361.

  44. Roy A.S., Matson M., Herlekar R. Response to «vitamin D concentrations and COVID-19 infection in UK Biobank». Diabetes Metab Syndr. 2020; 14(5): 777. doi: 10.1016/j.dsx.2020.05.049.

  45. Carpagnano G.E., Di Lecce V., Quaranta V.N. et al. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest. 2020; 1–7. doi: 10.1007/s40618-020-01370-x.

  46. Macaya F., Paeres C.E., Valls A. et al. Interaction between age and vitamin D deficiency in severe COVID-19 infection. Nutricion Hospitalaria. 2020; 37(5): 1039–42. doi: 10.20960/nh.03193.

  47. Ye K., Tang F., Liao X. et al. Does serum vitamin D level affect COVID-19 infection and its severity? A case-control study. J Am Coll Nutr. 2020; 1–8. doi: 10.1080/07315724.2020.1826005.

  48. Каронова Т.Л., Андреева А.Т., Вашукова М.А. Уровень 25(ОН)D в сыворотке крови у больных COVID-19. Журнал инфектологии. 2020; 3: 21–27. [Karonova T.L., Andreeva A.T., Vashukova M.A. Serum 25 (OH) D level in COVID-19 patients. Zhurnal infektologii. 2020; 3: 21–27. doi: 10.22625/2072-6732-2020-12-3-21-27.

  49. Kaufman H.W., Niles J.K., Kroll M.H. et al. SARS- CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS ONE. 2020: 15(9); e0239252. doi: 10.1371/journal.pone.0239252.

  50. Zhou J., Du J., Huang L. et al. Preventive effects of vitamin D on seasonal influenza A in infants: a multicenter, randomized, open, controlled clinical trial. Pediatr Infect Dis J. 2018; 37(8): 749–54. doi: 10.1097/INF.0000000000001890.

  51. Urashima M., Mezawa H., Noya M., Camargo C.A. Jr. Effects of vitamin D supplements on influenza A illness during the 2009 H1N1 pandemic: A randomized controlled trial. Food Funct. 2014; 5(9): 2365–70. doi: 10.1039/c4fo00371c.

  52. Ginde A.A., Blatchford P., Breese K. et al. High-dose monthly vitamin D for prevention of acute respiratory infection in older longterm care residents: a randomized clinical trial. J Am Geriatrics Society. 2017; 65(3): 496–503. doi: 10.1111/jgs.14679.

  53. Han J.E., Jones J.L., Tangpricha V. et al. High dose vitamin D administration in ventilated intensive care unit patients: a pilot double blind randomized controlled trial. J Clin Tran. Endocrinol. 2016; 4: 59–65. doi: 10.1016/j.jcte.2016.04.004.

  54. Youssef D.A., Ranasinghe T., Grant W.B., Peiris A.N. Vitamin D’s potential to reduce the risk of hospital-acquired infections. Dermatoendocrinol. 2012; 4(2): 167–75. doi: 10.4161/derm.20789.

  55. Пигарова Е.А., Рожинская Л.Я., Белая Ж.Е. и др. Клинические рекомендации российской ассоциации эндокринологов по диагностике, лечению и профилактике дефицита витамина D у взрослых. Проблемы эндокринологии. 2016; 4: 60–84. [Pigarova E.A., Rozhinskaya L.Ya., Belaya Zh.E. et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problemy endokrinologii. 2016; 4: 60–84 (In Russ.)]. doi: 10.14341/probl201662460-84.

  56. Holick M.F., Binkley N.C., Bischoff-Ferrari H.A. et al. Evaluation, treatment, and prevention of vitamin D deficiency: The Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011; 96(7): 1911–30. doi:10.1210/jc.2011-0385.

  57. Wimalawansa S.J. Global epidemic of coronavirus – COVID-19: what we can do to minimze risks. Eur J Biomed Pharm Sci. 2020; 7: 432–38.

  58. Heaney R.P., Davies K.M., Chen T.C. et al. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr. 2003; 77(1): 204–10. doi: 10.1093/ajcn/77.1.204.

  59. Entrenas Castillo M., Entrenas Costa L.M., Vaquero Barrios J.M. et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020; 203: 105751. doi: 10.1016/j.jsbmb.2020.105751.

  60. Annweiler C., Hanotte B., Grandin de l’Eprevier C. et al. Vitamin D and survival in COVID-19 patients: a quasi-experimental study. J Steroid Biochem Mol Biol. 2020: 204: 105771. doi: 10.1016/j.jsbmb.2020.105771.

  61. Ling S.F., Broad E., Murphy R. et al. Vitamin D treatment is associated with reduced risk of mortality in patients with COVID-19: a cross-sectional multi-centre observational study. Preprints with The Lancet. 2020 [cited 2020 Oct 20]. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3690902 (date of access – 06.11.2020).


About the Autors


Tatiana L. Karonova, MD, chief researcher, head of Clinical Endocrinology Laboratory, professor of the Department of internal medicine of National Medical Research Centre named after V.A. Almazov of the Ministry of Healthcare of Russia, professor of the Department of faculty therapy with the course of endocrinology, cardiology and functional diagnostics named after G.F. Lang with the Clinic of I.P. Pavlov First State Medical University of the Ministry of Healthcare of Russia. Address: 194021, Saint-Petersburg, 15 Parkhomenko Avenue. Tel.: +7 (921) 310-60-41. E-mail: karonova@mail.ru. ORCID: 0000-0002-1547-0123. eLibrary SPIN: 3337-4071
Ksenia A. Golovatyuk, resident of the Department of internal medicine, specialty «Endocrinology» of National Medical Research Centre named after V.A. Almazov of the Ministry of Healthcare of Russia. Address: 194021, Saint-Petersburg, 15 Parkhomenko Avenue. Tel.: +7 (921) 347-32-15. E-mail: ksgolovatiuk@gmail.com. ORCID: 0000-0002-0651-7110. eLibrary SPIN:1199-1978
Alena T. Andreev, junior researcher of Clinical Endocrinology Laboratory of the Institute of Endocrinology of National Medical Research Centre named after V.A. Almazov of the Ministry of Healthcare of Russia. Address: 194021, Saint-Petersburg, 15 Parkhomenko Avenue. Tel.: +7 (931) 255-72-03. E-mail: arabicaa@gmail.com. ORCID: 0000-0002-4878-6909. eLibrary SPIN: 6051-7214
Maria A. Vashukova, PhD, deputy chief physician for the development of medical aid of S.P. Botkin Clinical Infectious Hospital. Address: 195067, Saint-Petersburg, 49/1 Piskarevsky Avenue. Tel.: +7 (921) 917-12-12. E-mail: mavashukova@yahoo.com. ORCID: 0000-0002-0296-0481
Ekaterina S. Bykova, resident of the Department of internal medicine, specialty «Endocrinology» of National Medical Research Centre named after V.A. Almazov of the Ministry of Healthcare of Russia. Address: 194021, Saint-Petersburg, 15 Parkhomenko Avenue. Tel.: +7 (931) 960-38-00. E-mail: bykova160718@gmail.com. ORCID: 0000-0002-9342-507X
Yevgeny V. Shlyakhto, MD, Academician of RAS, member of RAS Presidium, honored scientist of the Russian Federation, General Director of National Medical Research Centre named after V.A. Almazov of the Ministry of Healthcare of Russia, professor of the Department of faculty therapy with the course of endocrinology, cardiology and functional diagnostics named after G.F. Lang with the Clinic of I.P. Pavlov First State Medical University of the Ministry of Healthcare of Russia. Address: 197022, Saint-Petersburg, 6-8 Leo Tolstoy Str. ORCID: 0000-0003-2929-0980. eLibrary SPIN: 6679-7621


Similar Articles


Бионика Медиа