Post-infectious asthenia and COVID-19


DOI: https://dx.doi.org/10.18565/therapy.2021.9.125-136

Vasenina E.E., Veryugina N.I., Levin O.S.

Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia, Moscow
Abstract. Post-infectious asthenia (PA) is a chronic multisystem disease manifesting itself in various constitutional and neurocognitive symptoms. Long-term symptoms after suffered coronaviral infection (COVID-19) are looking like PA in common, but at the same time have a number of characteristic features. This review is devoted to the epidemiology, pathogenesis, diagnosis and main approaches to the treatment of PA in general, and also after COVID-19.

Literature



  1. Mao L., Jin H., Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683–90. doi: 10.1001/jamaneurol.2020.1127.

  2. Greenhalgh T., Knight M., A’Court C. et al. Management of post-acute covid-19 in primary care. BMJ. 2020; 370: m3026. doi: 10.1136/bmj.m3026.

  3. Brooks K., Webster K., Smith E. et al. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet. 2020; 395(10227): 912–20. doi: 10.1016/S0140-6736(20)30460-8.

  4. Xiang Y.-T., Zhao Y.-J., Liu Z.-H. et al. The COVID-19 outbreak and psychiatric hospitals in China: managing challenges through mental health service reform. Int J Biol Sci. 2020; 16(10): 1741–44. doi: 10.7150/ijbs.45072.

  5. Brodaty H., Altendorf A., Withall A., Sachdev P. Do people become more apathetic as they grow older? A longitudinal study in healthy individuals. Int Psychogeriatr. 2010; 22(3): 426–36. doi: 10.1017/S1041610209991335.

  6. Treadway M.T., Zald D.H. Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neurosci Biobehav Rev. 2011; 35(3): 537–55. doi: 10.1016/j.neubiorev.2010.06.006.

  7. El Sayed S., Shokry D., Gomaa S.M. Post-COVID-19 fatigue and anhedonia: A cross-sectional study and their correlation to post-recovery period. Neuropsychopharmacol Rep. 2021; 41(1): 50–55. doi: 10.1002/npr2.12154.

  8. Goyal K., Chauhan P., Chhikara K. et al. Fear of COVID-2019: First suicidal case in India. Asian J Psychiatr. 2020; 49: 101989. doi: 10.1016/j.ajp.2020.101989.

  9. Del Rio C., Collins L.F., Malani P. Long-term health consequences of COVID-19. JAMA. 2020; 324(17): 1723–24. doi: 10.1001/jama.2020.19719.

  10. Michelen M., Manoharan L., Elkheir N. et al. Characterising long-term covid-19: A rapid living systematic review. BMJ Glob Health. 2021; 6(9): e005427. doi: 10.1136/bmjgh-2021-005427.

  11. Lim E.J., Ahn Y.C., Jang E.S. et al. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J Transl Med. 2020; 18(1): 100. doi: 10.1186/s12967-020-02269-0.

  12. Prins J.B., van der Meer J.W., Bleijenberg G. Chronic fatigue syndrome. Lancet. 2006; 367(9507): 346–55. doi: 10.1016/S0140-6736(06)68073-2.

  13. Naess H., Sundal E., Myhr K.-M., Nyland H.I. Postinfectious and chronic fatigue syndromes: clinical experience from a tertiary-referral centre in Norway. In Vivo. 2010; 24(2): 185–88.

  14. Members of the International Association for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (IACFS/ME) and Primer Writing Committee. ME/CFS: A Primer for Clinical Practitioners. Chicago, IL: IACFS/ME and Primer Writing Committee. 2014; 50 pp.

  15. Hatcher S., House A. Life events, difficulties and dilemmas in the onset of chronic fatigue syndrome: A case–control study. Psychol Med. 2003; 33(7): 1185–92. doi: 10.1017/s0033291703008274.

  16. Perrin R., Riste L., Hann M. Into the looking glass: Post-viral syndrome post COVID-19. Med Hypotheses. 2020; 144: 110055. doi: 10.1016/j.mehy.2020.110055.

  17. Fukuda K., Straus S.E., Hickie I. et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Intern Med. 1994; 121(12): 953–59. doi: 10.7326/0003-4819-121-12-199412150-00009.

  18. Carruthers B.M., Jain A.K., De Meirleir K.L. et al. Myalgic encephalomyelitis/chronic fatigue syndrome: A clinical case definition and guidelines for medical practitioners (an overview of the Canadian consensus document). J Chronic Fatigue Syndr. 2003; 11: 7–115. doi: 10.1300/J092v11n01_02.

  19. Clayton E.W. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: An IOM report on redefining an illness. JAMA. 2015; 313(11): 1101–02. doi: 10.1001/jama.2015.1346.

  20. Komaroff A.L., Lipkin W.I. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of post-acute COVID-19 syndrome. Trends Mol Med. 2021; 27(9): 895–906. doi: 10.1016/j.molmed.2021.06.002.

  21. Jason L.A., Porter N., Brown M. et al. CFS: A review of epidemiology and natural history studies. Bull IACFS ME. 2009; 17(3): 88–106.

  22. Demitrack M.A., Greden J.F. Chronic fatigue syndrome: The need for an integrative approach. Biol Psychiatry. 1991; 30(8): 747–52. doi: 10.1016/0006-3223(91)90231-a.

  23. Briggs N.C., Levine P.H. A comparative review of systemic and neurological symptomatology in 12 outbreaks collectively described as chronic fatigue syndrome, epidemic neuromyasthenia, and myalgic encephalomyelitis. Clin Infect Dis. 1994; 18(1): 32–42. doi: 10.1093/clinids/18.supplement_1.s32.

  24. Islam M.F., Cotler J., Jason L.A. Post-viral fatigue and COVID-19: Lessons from past epidemics. Fatigue. 2020; 8: 61–69. doi: 10.1080/21641846.2020.1778227.

  25. Katz B.Z., Shiraishi Y., Mears C.J. et al. Chronic fatigue syndrome after infectious mononucleosis in adolescents. Pediatrics. 2009; 124(1): 189–93. doi: 10.1542/peds.2008-1879.

  26. Hickie I., Davenport T., Wakefield D. et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ. 2006; 333(7568): 575. doi: 10.1136/bmj.38933.585764.AE.

  27. Magnus P., Gunnes N., Tveito K. et al. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is associated with pandemic influenza infection, but not with an adjuvanted pandemic influenza vaccine. Vaccine. 2015; 33(46): 6173–77. doi: 10.1016/j.vaccine.2015.10.018.

  28. Lam M.H., Wing Y.K., Yu M.W. et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: Long-term follow-up. Arch Intern Med. 2009; 169(22): 2142–47. doi: 10.1001/archinternmed.2009.384.

  29. Lyons D., Frampton M., Naqvi S. et al. Fallout from the COVID-19 pandemic – should we prepare for a tsunami of post viral depression? Ir J Psychol Med. 2020; 37(4): 295–300. doi: 10.1017/ipm.2020.40.

  30. Luyt C.-E., Combes A., Becquemin M.-H. et al. Long-term outcomes of pandemic 2009 influenza A(H1N1)-associated severe ARDS. Chest. 2012; 142(3): 583–92. doi: 10.1378/chest.11-2196.

  31. Rogers J.P., Chesney E., Oliver D. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020; 7(7): 611–27. doi: 10.1016/S2215-0366(20)30203-0.

  32. Rasa S., Nora-Krukle Z., Henning N. et al. Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med. 2018; 16(1): 268. doi: 10.1186/s12967-018-1644-y.

  33. Mackay A., Tate W.P. A compromised paraventricular nucleus within a dysfunctional hypothalamus: A novel neuroinflammatory paradigm for ME/CFS. Int J Immunopathol Pharmacol. 2018; 32: 1–8. doi: 10.1177/2058738418812342.

  34. Olson K.L., Marc M.S., Grude L.A. et al. The hypothalamic pituitary-adrenal axis: The actions of the central nervous system and potential biomarkers. Anti-aging Therapeut. 2012; 13: 91–100.

  35. Strawbridge R., Sartor M.-L., Scott F. et al. Inflammatory proteins are altered in chronic fatigue syndrome – a systematic review and meta-analysis. Neurosci Biobehav Rev. 2019; 107: 69–83. doi: 10.1016/j.neubiorev.2019.08.011.

  36. Anderson G., Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry. 2020; 103: 109976. doi: 10.1016/j.pnpbp.2020.109976.

  37. Woodruff M.C., Ramonell R.P., Lee F.E.H., Sanz I. Clinically identifiable autoreactivity is common in severe SARS-CoV-2 infection. medRxiv. 2020. doi: 10.1101/2020.10.21.20216192.

  38. Hives L., Bradley A., Richards J. Can physical assessment techniques aid diagnosis in people with chronic fatigue syndrome/myalgic encephalomyelitis? A diagnostic accuracy study. BMJ Open. 2017; 7(11): e017521. doi: 10.1136/bmjopen-2017-017521.

  39. Maksoud R., du Preez S., Eaton-Fitch N. et al. A systematic review of neurological impairments in myalgic encephalomyelitis/chronic fatigue syndrome using neuroimaging techniques. PLoS One. 2020; 15(4): e0232475. doi: 10.1371/journal.pone.0232475.

  40. Desforges M., Le Coupanec A., Dubeau P. et al. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses. 2019; 12(1): 14. doi: 10.3390/v12010014.

  41. Varatharaj A., Thomas N., Ellul M.A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020; 7(10): 875–82. doi: 10.1016/S2215-0366(20)30287-X.

  42. Nakatomi Y., Mizuno K., Ishii A. et al. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: An 11C-(R)-PK11195 PET study. J Nucl Med. 2014; 55(6): 945–50. doi: 10.2967/jnumed.113.131045.

  43. Filler K., Lyon D., Bennett J. et al. Association of mitochondrial dysfunction and fatigue: A review of the literature. BBA Clin. 2014; 1: 12–23. doi: 10.1016/j.bbacli.2014.04.001.

  44. Behan W.M., More I.A., Behan P.O. Mitochondrial abnormalities in the postviral fatigue syndrome. Acta Neuropathol. 1991; 83(1): 61–65. doi: 10.1007/BF00294431.

  45. Broderick G., Craddock R.C., Whistler T. et al. Identifying illness parameters in fatiguing syndromes using classical projection methods. Pharmacogenomics. 2006; 7(3): 407–19. doi: 10.2217/14622416.7.3.407.

  46. Maes M., Twisk F.N.M. Why myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may kill you: Disorders in the inflammatory and oxidative and nitrosative stress (IO&NS) pathways may explain cardiovascular disorders in ME/CFS. Neuro Endocrinol Lett. 2009; 30(6): 677–93.

  47. Fernandez-de-Las-Penas C., Gomez-Mayordomo V., Cuadrado M.L. et al. The presence of headache at onset in SARS-CoV-2 infection is associated with long-term post-COVID headache and fatigue: A case-control study. Cephalalgia. 2021; 3331024211020404. doi: 10.1177/03331024211020404. Online ahead of print.

  48. Ladds E., Rushforth A., Wieringa S. et al. Persistent symptoms after COVID-19: Qualitative study of 114 «long COVID» patients and draft quality criteria for services. BMC Health Serv Res. 2020; 20(1): 1144. doi: 10.1186/s12913-020-06001-y.

  49. Arnold D.T., Hamilton F.W., Milne A. et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: Results from a prospective UK cohort. Thorax. 2021; 76(4): 399–401. doi: 10.1136/thoraxjnl-2020-216086.

  50. Ayoubkhani D., Khunti K., Nafilyan V. et al. Epidemiology of post-COVID syndrome following hospitalisation with coronavirus: A retrospective cohort study. BMJ. 2021; 372: n693. doi: 10.1136/bmj.n693.

  51. Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet. 2021; 397(10270): 220–32. doi: 10.1016/S0140-6736(20)32656-8.

  52. Rudroff T., Fietsam A.C., Deters J.R. et al. Post-covid-19 fatigue: Potential contributing factors. Brain Sci. 2020; 10(12): 1012. doi: 10.3390/brainsci10121012.

  53. Desforges M., Le Coupanec A., Brison E. et al. Neuroinvasive and neurotropic human respiratory coronaviruses: Potential neurovirulent agents in humans. Adv Exp Med Biol. 2014; 807: 75–96. doi: 10.1007/978-81-322-1777-0_6.

  54. Meeusen R., Watson P., Hasegawa H. et al. Central fatigue: The serotonin hypothesis and beyond. Sports Med. 2006; 36(10): 881–909. doi: 10.2165/00007256-200636100-00006.

  55. Delorme C., Paccoud O., Kas A. et al. Covid-19 related encephalopathy: A case series with brain FDG-PET/CT findings. Eur J Neurol. 2020; 27(12): 2651–57. doi: 10.1111/ene.14478.

  56. Lulic T., El-Sayes J., Fasset H.J., Nelson A.J. Physical activity levels determine exercise induced changes in brain excitability. PLoS One. 2017; 12(3): e0173672. doi: 10.1371/journal.pone.0173672.

  57. Asadi-Pooya A.A., Simani L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci. 2020; 413: 116832. doi: 10.1016/j.jns.2020.116832.

  58. Morgul E., Bener A., Atak M. et al. COVID-19 pandemic and psychological fatigue in Turkey. Int J Soc Psychiatry. 2021; 67(2): 128–35. doi: 10.1177/0020764020941889.

  59. Jin M., Tong Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis. 2020; 26(7): 1618–20. doi: 10.3201/eid2607.200445.

  60. VanderVeen B.N., Fix D.K., Montalvo R.N. et al. The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6. Exp Physiol. 2019; 104(3): 385–97. doi: 10.1113/EP087429.

  61. Mecenas P., Moreira Bastos R.T., Vallinoto A.C., Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One. 2020; 15(9): e0238339. doi: 10.1371/journal.pone.0238339.

  62. Ssentongo P., Ssentongo A.E., Heilbrunn E.S. et al. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS One. 2020; 15(8): e0238215. doi: 10.1371/journal.pone.0238215.

  63. Kedor C., Freitag H., Meyer-Arndt L. et al. Chronic COVID-19 syndrome and chronic fatigue syndrome (ME/CFS) following the first pandemic wave in Germany – a first analysis of a prospective observational study. medRxiv. 2021; 1–23. doi: 10.1101/2021.02.06.21249256.

  64. Carfi A., Bernabei R., Landi F. Persistent symptoms in patients after acute COVID-19. JAMA. 2020; 324(6): 603–05. doi: 10.1001/jama.2020.12603.

  65. Townsend L., Dyer A.H., Jones K. et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE. 2020; 15(11): e0240784. doi: 10.1371/journal.pone.0240784.

  66. Daynes E., Gerlis C., Chaplin E. et al. Early experiences of rehabilitation for individuals post-COVID to improve fatigue, breathlessness exercise capacity and cognition – A cohort study. Chron Respir Dis. 2021; 18: 14799731211015691. doi: 10.1177/14799731211015691.

  67. Ferraro F., Calafiore D., Dambruoso F. et al. COVID-19 related fatigue: Which role for rehabilitation in post-COVID-19 patients? A case series. J Med Virol. 2021; 93(4): 1896–99. doi: 10.1002/jmv.26717.

  68. Lv D., Chen X., Wang X. et al. Pulmonary function of patients with 2019 novel coronavirus induced-pneumonia: A retrospective cohort study. Ann Palliat Med. 2020; 9(5): 3447–52. doi: 10.21037/apm-20-1688.

  69. Корабельникова Е.А. Тревожные расстройства в условиях пандемии COVID-19. Медицинский вестник Северного Кавказа. 2021; 1: 79–85. [Korabelnikova E.A. Anxiety disorders in the context of the COVID-19 pandemic. Meditsinskiy vestnik Severnogo Kavkaza = Medical Bulletin of the North Caucasus. 2021; 1: 79–85 (In Russ.)]. https://doi.org/10.14300/mnnc.2021.16022.

  70. Starling-Soares B., Carrera-Bastos P., Bettendorff L. Role of the synthetic B1 vitamin sulbutiamine on health. J Nutr Metab. 2020; 2020: 9349063. doi: 10.1155/2020/9349063.

  71. Вейн А.М., Федотова А.В., Гордеев С.А. Энерион – эффективное и безопасное средство для лечения астении у больных с психовегетативным синдромом. РМЖ. 2004; 10: 631–634. [Vein A.M., Fedotova A.V., Gordeev S.A. Enerion is an effective and safe remedy for the treatment of asthenia in patients with psychovegetative syndrome. Russkiy meditsinskiy zhurnal = Russian Medical Journal. 2004; 10: 631–634 (In Russ.)].

  72. Attademo L., Bernardini F. Are dopamine and serotonin involved in COVID-19 pathophysiology? Eur J Psychiatry. 2021; 35(1): 62–63. doi: 10.1016/j.ejpsy.2020.10.004.

  73. Левин О.С., Слизкова Ю.Б. Применение энериона при лечении астенических расстройств у больных, перенесших легкую черепно-мозговую травму. Журнал неврологии и психиатрии им. C.C. Корсакова. 2007; 5: 44–48. [Levin O.S., Slizkova Yu.B. The use of Enerion in the treatment of asthenic disorders in patients after mild cranio-cerebral trauma. Journal of Neurology and Psychiatry named after S.S. Korsakov. 2007; 5: 44–48 (In Russ.)].


About the Autors


Elena E.Vasenina, MD, associate professor of the Department of neurology with a course of reflexology and manual therapy, Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia. Address: 125993, Moscow, 2/1 Barrikadnaya Str., building 1. E-mail: hel_vas@mail.ru. ORCID: 0000-0002-2600-0573
Nadezhda I. Veriugina, neurologist of City Clinical Hospital named after S.P. Botkin of the Moscow Department of Healthcare. Address: 125284, Moscow, 5 2nd Botkinsky Drive. E-mail: m_nadusha_i@mail.ru. ORCID: 0000-0003-2297-4781
Oleg S. Levin, MD, professor, head of the Department of neurology with a course of reflexology and manual therapy, Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia. Address: 125993, Moscow, 2/1 Barrikadnaya Str., building 1. E-mail: oslevin@gmail.com. ORCID: 0000-0003-3872-5923


Similar Articles


Бионика Медиа