The G319S variants of the HNF1A gene in a family with diabetes mellitus
DOI: https://dx.doi.org/10.18565/therapy.2021.9.148-154
Ivanoshchuk D.E., Mikhailova S.V., Ovsyannikova A.K., Shakhtshneider E.V., Druk I.V., Rymar O.D., Voevoda M.I.
1) Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk;
2) Research Institute of Therapy and Preventive Medicine – a branch of Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk;
3) Omsk State Medical University of the Ministry of Healthcare of Russia;
4) Federal Research Center for Fundamental and Translational Medicine, Novosibirsk
Abstract. In the process of differential diagnosis of the diabetes mellitus (DM) type, the greatest difficulty is presented by patients with the onset of the disease at a young age, since in this age group type 1 diabetes, type 2 diabetes and monogenic forms of diabetes (including MODY diabetes) could be manifesting.
The aim of the study is to show the possibilities of molecular genetic research for MODY-HNF1A and type 2 diabetes mellitus with early onset on the example of a clinical case of diabetes in a proband with a burdened family anamnesis.
Material and methods. The proband and the mother of the proband underwent targeted DNA sequencing using the Illumina MiSeq NGS System (Illumina Inc., San Diego, CA, USA). The target panel included the coding regions and adjacent splicing sites of MODY-associated genes: HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1.
Results. The previously described heterozygous variant rs137853240 was found, which is located at the 3 ‘end of exon 4 of the HNF1A gene, near the highly conserved splice donor site and leads to a change in the set of transcripts encoded by this gene. Previously, it was shown that this substitution is associated with early onset of type 2 diabetes mellitus in an isolated population of the indigenous communities of Canada (the Oji-Kree population). Therefore, we estimated its prevalence in samples of the Koryaks, Chukchi, and Eskimos of Canada. Additionally, we analyzed population samples of the population of Western Siberia and patients with type 2 diabetes. In all studied samples, carriers of c.955G> A, p.Gly319Ser (rs137853240) were not found. Taking into account the described phenotypic features of individuals carrying the Gly319Ser variant, we assume that this variant is associated with the development of MODY.
Conclusion. The presented clinical case demonstrates the possibilities of molecular genetic study of monogenic forms of diabetes mellitus, in particular, associated with HNF1A gene analysis. A personalized approach to diagnosis and treatment is especially important in identifying a nonclassical course of diabetes in young people.
Literature
- Дедов И.И., Шестакова М.В., Майоров А.Ю. с соавт. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 9-й выпуск. Сахарный диабет. 2019; S1–1: 1–144. [Dedov I.I., Shestakova M.V., Mayorov A.Yu. et al. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 9th edition. Sakharnyy diabet = Diabetes. 2019; S1–1: 1–144 (In Russ.)]. https://dx.doi.org/10.14341/DM221S1.
- Yang Y., Chan L. Monogenic diabetes: What it teaches us on the common forms of type 1 and type 2 diabetes. Endocr Rev. 2016; 37(3): 190–222. doi: 10.1210/er.2015-1116.
- Lachance C.H. Practical aspects of monogenic diabetes: A clinical point of view. Can J Diabetes. 2016; 40(5): 368–75. doi: 10.1016/j.jcjd.2015.11.004.
- Mohan V., Radha V. Precision diabetes is slowly becoming a reality. Med Princ Pract. 2019; 28(1): 1–9. doi: 10.1159/000497241.
- Shields B.M., Hicks S., Shepherd M.H. et al. Maturity-onset diabetes of the young (MODY): How many cases are we missing? Diabetologia. 2010; 53(12): 2504–08. doi: 10.1007/s00125-010-1799-4.
- Firdous P., Nissar K., Ali S. et al. Genetic testing of maturity-onset diabetes of the young current status and future perspectives. Front Endocrinol (Lausanne). 2018; 9: 253. doi: 10.3389/fendo.2018.00253.
- Ellard S., Bellanne-Chantelot C., Hattersley A.T. European Molecular Genetics Quality Network (EMQN) MODY group. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia. 2008; 51(4): 546–53. doi: 10.1007/s00125-008-0942-y.
- Stride A., Shields B., Gill-Carey O. et al. Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia. 2014; 57(1): 54–56. doi: 10.1007/s00125-013-3075-x.
- Воевода М.И., Рымар О.Д., Шатшнейдер Е.А. с соавт. Диагностика и ведение пациентов с диабетом MODY: методические рекомендации для врачей. Н.: Издательство СО РАН. 2020; 48 с. [Voevoda M.I., Rymar O.D., Shatshneider E.A. et al. Diagnosis and management of patients with diabetes MODY: guidelines for doctors. N: Publishing house of the SB RAS. 2020; 48 pp. (In Russ.)].
- Bach I., Mattei M.G., Cereghini S., Yaniv M. Two members of an HNF1 homeoprotein family are expressed in human liver. Nucleic Acids Res. 1991; 19(13): 3553–59. doi: 10.1093/nar/19.13.3553.
- Chi Y.I., Frantz J.D., Oh B.C. et al. Diabetes mutations delineate an atypical POU domain in HNF-1alpha. Mol Cell. 2002; 10(5): 1129–37. doi: 10.1016/s1097-2765(02)00704-9.
- Vaxillaire M., Abderrahmani A., Boutin P. et al. Anatomy of a homeoprotein revealed by the analysis of human MODY3 mutations. J Biol Chem. 1999; 274(50): 35639–46. doi: 10.1074/jbc.274.50.35639.
- Bach I., Yaniv M. More potent transcriptional activators or a transdominant inhibitor of the HNF1 homeoprotein family are generated by alternative RNA processing. EMBO J. 1993; 12(11): 4229–42. Erratum in: EMBO J 1994; 13(2): 492.
- Pontoglio M., Sreenan S., Roe M. et al. Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice. J Clin Invest. 1998; 101(10): 2215–22. doi: 10.1172/JCI2548.
- Pontoglio M. Hepatocyte nuclear factor 1, a transcription factor at the crossroads of glucose homeostasis. J Am Soc Nephrol. 2000; 11 Suppl 16: S140–43.
- Harries L.W., Ellard S., Stride A. et al. Isomers of the TCF1 gene encoding hepatocyte nuclear factor-1 alpha show differential expression in the pancreas and define the relationship between mutation position and clinical phenotype in monogenic diabetes. Hum Mol Genet. 2006; 15(14): 2216–24. doi: 10.1093/hmg/ddl147.
- Shepherd M., Ellis I., Ahmad A.M. et al. Predictive genetic testing in maturity-onset diabetes of the young (MODY). Diabet Med. 2001; 18(5): 417–21. doi: 10.1046/j.1464-5491.2001.00447.x.
- Owen K.R., Shepherd M., Stride A. et al. Heterogeneity in young adult onset diabetes: Aetiology alters clinical characteristics. Diabet Med. 2002; 19(9): 758–61. doi: 10.1046/j.1464-5491.2002.00766.x.
- Sambrook J., Russell D.W. Purification of nucleic acids by extraction with phenol: Chloroform. CSH Protoc. 2006; 2006(1): pdb.prot4455. doi: 10.1101/pdb.prot4455.
- Ivanoshchuk D.E., Shakhtshneider E.V., Rymar O.D. et al. The mutation spectrum of maturity onset diabetes of the young (MODY)-associated genes among Western Siberia patients. J Pers Med. 2021; 11(1): 57. doi: 10.3390/jpm11010057.
- Pajak A., Szafraniec K., Kubinova R. et al. Binge drinking and blood pressure: cross-sectional results of the HAPIEE study. PLoS One. 2013; 8(6): e65856. doi: 10.1371/journal.pone.0065856.
- Баранова А. А., Друк И. В., Овсянникова А. К. Описание клинических случаев семейной формы сахарного диабета HNF1A-MODY. Лечащий врач. 2020; 12: 35–40. [Baranova A.A., Druk I.V., Ovsyannikova A.K. Description of clinical cases of the familial form of HNF1A-MODY diabetes mellitus. Lechashchiy vrach = Attending physician. 2020; 12: 35–40 (In Russ.)]. https://dx.doi.org/10.26295/OS.2020.13.48.008.
- Hegele R.A., Cao H., Harris S.B. et al. The hepatic nuclear factor-1 alpha G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree. J Clin Endocrinol Metab. 1999; 84(3): 1077–82. doi: 10.1210/jcem.84.3.5528.
- Harris S.B., Gittelsohn J., Hanley A. et al. The prevalence of NIDDM and associated risk factors in native Canadians. Diabetes Care. 1997; 20(2): 185–87. doi: 10.2337/diacare.20.2.185.
- Lau H.H., Ng N.H.J., Loo L.S.W. et al. The molecular functions of hepatocyte nuclear factors – in and beyond the liver. J Hepatol. 2018; 68(5): 1033–48. doi: 10.1016/j.jhep.2017.11.026.
- Hegele R.A., Cao H., Harris S.B. et al. The private hepatocyte nuclear factor-1alpha G319S variant is associated with plasma lipoprotein variation in Canadian Oji-Cree. Arterioscler Thromb Vasc Biol. 2000; 20(1): 217–22. doi: 10.1161/01.atv.20.1.217.
- Harries L.W., Sloman M.J., Sellers E.A. et al. Diabetes susceptibility in the Canadian Oji-Cree population is moderated by abnormal mRNA processing of HNF1A G319S transcripts. Diabetes. 2008; 57(7): 1978–82. doi: 10.2337/db07-1663.
- GoodSmith M.S., Skandari M.R., Huang E.S., Naylor R.N. The impact of biomarker screening and cascade genetic testing on the cost-effectiveness of MODY genetic testing. Diabetes Care. 2019; 42(12): 2247–55. doi: 10.2337/dc19-0486.
About the Autors
Dinara E. Ivanoshchuk, junior researcher of Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, researcher of the Research Institute of Therapy and Preventive Medicine – a branch of Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences. Address: 630090, Novosibirsk, 10 Akademika Lavrentieva Avenue. Tel.: +7 (961) 874-12-16. E-mail: dinara2084@mail.ru. ORCID: 0000-0002-0403-545X
Svetlana V. Mikhailova, PhD, researcher of Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences. Address: Novosibirsk, 10 Prospect Akademika Lavrentieva Avenue. Tel.: +7 (913) 910-24-63. E-mail: mikhail@bionet.nsc.ru. ORCID: 0000-0002-0897-5473
Alla K. Ovsyannikova, PhD, senior researcher of the Research Institute of Therapy and Preventive Medicine – a branch of Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences. Address: 630089, Novosibirsk, 175/1 Borisa Bogatkova Str. Tel.: +7 (383) 373-09-89. E-mail: aknikolaeva@bk.ru. ORCID: 0000-0002-9669-745X
Elena V. Shakhtshneider, PhD, deputy head of scientific work, Research Institute of Therapy and Preventive Medicine – a branch of Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, head of the sector for the study of monogenic forms of common human diseases, Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences. Address: 630089, Novosibirsk, 175/1 Borisa Bogatkova Str. Tel..: +7 (383) 373-09-82. E-mail: 2117409@mail.ru. ORCID: 0000-0001-6108-1025
Inna V. Druk, MD, associate professor, head of the Department of internal diseases and family medicine, Omsk State Medical University of the Ministry of Healthcare of Russia. Address: 644033, Omsk, 127/1 Krasny Put` Str. Tel.: +7 (381) 249-20-85. E-mail: osma-genpract@yandex.ru. ORCID: 0000-0001-8317-7765
Oksana D. Rymar, MD, head of the laboratory of clinical-population and preventive studies of therapeutic and endocrine diseases, Research Institute of Therapy and Preventive Medicine – a branch of Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences. Address: 630089, Novosibirsk, 175/1 Borisa Bogatkova Str. Tel.: +7 (383) 373-09-89. E-mail: orymar23@gmail.com. ORCID: 0000-0003-4095-0169
Mikhail I. Voevoda, MD, professor, academician of RAS, Director of Federal Research Center for Fundamental and Translational Medicine. Address: 630117, Novosibirsk, 2 Timakova Str. E-mail: mvoevoda@ya.ru. ORCID: 0000-0003-4716-876X
Similar Articles