Hyperthyroidism and atrial fibrillation: a tangle of interdisciplinary problems associated with COVID-19 pandemic


DOI: https://dx.doi.org/10.18565/therapy.2022.8.95-106

Ruyatkina L.A., Ruyatkin D.S.

Novosibirsk State Medical University of the Ministry of Healthcare of Russia
Abstract. Variants of hyperthyroidism, both endogenous (Graves’ disease, destructive thyroiditis, functional autonomy of the thyroid gland) and exogenous (as a result of suppressive or excessive levothyroxine sodium replacement therapy), even in its subclinical form, are often combined with atrial fibrillation (AF) due to the participation of thyroid gland hormones in cardiac electrophysiology. Correlations between hyperthyroidism and AF underly in a basis of various clinical situations, the occurrence and urgency of which is increasing in the context of COVID-19 pandemic. The article highlights the possible mechanisms of hyperthyroidism and COVID-19 association. Risk factors and consequences of AF associated with hyperthyroidism, the role of its early diagnosis in the prognosis of AF are considered. The main principles of therapy for evident hyperthyroidism are summarized, taking into account the cardiovascular status, including amiodarone-induced thyrotoxicosis. The discussion about the advisability of treating subclinical hyperthyroidism depending on its stage, the age of the patient and the presence of comorbid pathology is also analyzed.

Literature


1. Zhang Y., Dedkov E.I., Teplitsky D. et al. Both hypothyroidism and hyperthyroidism increase atrial fibrillation inducibility in rats. Circ Arrhythm Electrophysiol. 2013; 6(5): 952–59. https://dx.doi.org/10.1161/CIRCEP.113.000502.


2. Baumgartner C., da Costa B.R., Collet T.H. et al. Thyroid function within the normal range, subclinical hypothyroidism, and the risk of atrial fibrillation. Circulation. 2017; 136(22): 2100–16. https://dx.doi.org/10.1161/CIRCULATIONAHA.117.028753.


3. Uribarri A., Nunez-Gil I.J., Aparisi A. et al. Atrial fibrillation in patients with COVID-19. Usefulness of the CHA2DS2-VASc score: An analysis of the international HOPE COVID-19 registry. Rev Esp Cardiol (Engl Ed). 2021; 74(7): 608–15.https://dx.doi.org/10.1016/j.rec.2020.12.009.


4. Slipczuk L., Castagna F., Schonberger A. et al. Incidence of new-onset atrial fibrillation in COVID-19 is associated with increased epicardial adipose tissue. J Interv Card Electrophysiol. 2022; 64(2): 383–91. https://dx.doi.org/10.1007/s10840-021-01029-4.


5. Bhatla A., Mayer M.M., Adusumalli S. et al. COVID-19 and cardiac arrhythmias. Heart Rhythm. 2020; 17(9): 1439–44.https://dx.doi.org/10.1016/j.hrthm.2020.06.016.


6. Franklyn J.A., Boelaert K. Thyrotoxicosis. Lancet. 2012; 379(9821): 1155–66. https://dx.doi.org/10.1016/S0140-6736(11)60782-4.


7. Wang J.J., Zhou J.J., Yuan X.L. et al. Hyperthyroidism caused by acquired immune deficiency syndrome. Eur Rev Med Pharmacol Sci. 2014; 18(6): 875–79.


8. Skelin M., Lucijanic T., Amidzic Klaric D. et al. Factors affecting gastrointestinal absorption of levothyroxine: A review. Clin Ther. 2017; 39(2): 378–403. https://dx.doi.org/10.1016/j.clinthera.2017.01.005.


9. Woeber K.A. Thyrotoxicosis and the heart. N Engl J Med. 1992; 327(2): 94–98. https://dx.doi.org/10.1056/NEJM199207093270206.


10. January C.T., Wann L.S., Alpert J.S. et al.; American College of Cardiology/American Heart Association Task Force on Practice G. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014; 64(21): e1–76. https://dx.doi.org/10.1016/j.jacc.2014.03.022.


11. Marrakchi S., Kanoun F., Idriss S. et al. Arrhythmia and thyroid dysfunction. Herz. 2015; 40 Suppl 2: 101–9.https://dx.doi.org/10.1007/s00059-014-4123-0.


12. Cooper D.S., Biondi B. Subclinical thyroid disease. Lancet. 2012; 379(9821): 1142–54.https://dx.doi.org/10.1016/S0140-6736(11)60276-6.


13. Hollowell J.G., Staehling N.W., Flanders W.D. et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002; 87(2): 489–99.https://dx.doi.org/10.1210/jcem.87.2.8182.


14. Yang G., Wang Y., Ma A., Wang T. Subclinical thyroid dysfunction is associated with adverse prognosis in heart failure patients with reduced ejection fraction. BMC Cardiovasc Disord. 2019; 19(1): 83. https://dx.doi.org/10.1186/s12872-019-1055-x.


15. Bano A., Dhana K., Chaker L. et al. Association of thyroid function with life expectancy with and without cardiovascular disease: The Rotterdam study. JAMA Intern Med. 2017; 177(11): 1650–57. https://dx.doi.org/10.1001/jamainternmed.2017.4836.


16. Razvi S., Shakoor A., Vanderpump M. et al. The influence of age on the relationship between subclinical hypothyroidism and ischemic heart disease: A meta-analysis. J Clin Endocrinol Metab. 2008; 93(8): 2998–3007. https://dx.doi.org/10.1210/jc.2008-0167.


17. Chaker L., Heeringa J., Dehghan A. et al. Normal thyroid function and the risk of atrial fibrillation: The Rotterdam study. J Clin Endocrinol Metab. 2015; 100(10): 3718–24. https://dx.doi.org/10.1210/jc.2015-2480.


18. Tribulova N., Kurahara L.H., Hlivak P. et al. Pro-arrhythmic signaling of thyroid hormones and its relevance in subclinical hyperthyroidism. Int J Mol Sci. 2020; 21(8): 2844. https://dx.doi.org/10.3390/ijms21082844.


19. Corona G., Croce L., Sparano C. et al. Thyroid and heart, a clinically relevant relationship. J Endocrinol Invest. 2021; 44(12): 2535–44. https://dx.doi.org/10.1007/s40618-021-01590-9.


20. Yamakawa Y., Kato T.S., Noh J.Y. et al. Thyroid hormone plays an important role in cardiac function: From bench to bedside. Front Physiol. 2021; 12: 606931. https://dx.doi.org/10.3389/fphys.2021.606931.


21. Reddy V., Taha W., Kundumadam S., Khan M. Atrial fibrillation and hyperthyroidism: A literature review. Indian Heart J. 2017; 69(4): 545–50. https://dx.doi.org/10.1016/j.ihj.2017.07.004.


22. Osuna P.M., Udovcic M., Sharma M.D. Hyperthyroidism and the Heart. Methodist Debakey Cardiovasc J. 2017; 13(2): 60–63.https://dx.doi.org/10.14797/mdcj-13-2-60.


23. Ikegami K., Refetoff S., Van Cauter E., Yoshimura T. Interconnection between circadian clocks and thyroid function. Nat Rev Endocrinol. 2019; 15(10): 590–600. https://dx.doi.org/10.1038/s41574-019-0237-z.


24. Allada R., Bass J. Circadian mechanisms in medicine. N Engl J Med. 2021; 384(6): 550–61. https://dx.doi.org/10.1056/NEJMra1802337.


25. Moon S.H., Lee B.J., Kim S.J., Kim H.C. Relationship between thyroid stimulating hormone and night shift work. Ann Occup Environ Med. 2016; 28: 53. https://dx.doi.org/10.1186/s40557-016-0141-0.


26. Nakazawa H., Lythall D.A., Noh J. et al. Is there a place for the late cardioversion of atrial fibrillation? A long-term follow-up study of patients with post-thyrotoxic atrial fibrillation. Eur Heart J. 2000; 21(4): 327–33. https://dx.doi.org/10.1053/euhj.1999.1956.


27. Vargas-Uricoechea H., Bonelo-Perdomo A., Sierra-Torres C.H. Effects of thyroid hormones on the heart. Clin Investig Arterioscler. 2014; 26(6): 296–309. https://dx.doi.org/10.1016/j.arteri.2014.07.003.


28. Biondi B. Atrial fibrillation and hyperthyroidism. In: Camm A.J. et al. (eds). The ESC textbook of cardiovascular medicine, 3 edition. The European Society of Cardiology series (Oxford, 2018; online edition, ESC publications, 30 July 2020).https://dx.doi.org/10.1093/med/9780198784906.003.0525_update_001. Accessed 13 Oct. 2022.


29. Selmer C., Olesen J.B., Hansen M.L. et al. Subclinical and overt thyroid dysfunction and risk of all-cause mortality and cardiovascular events: A large population study. J Clin Endocrinol Metab. 2014; 99(7): 2372–82. https://dx.doi.org/10.1210/jc.2013-4184.


30. Kim Y.G., Choi Y.Y., Han K.D. et al. Atrial fibrillation is associated with increased risk of lethal ventricular arrhythmias. Sci Rep. 2021; 11(1): 18111. https://dx.doi.org/10.1038/s41598-021-97335-y.


31. Osman F., Gammage M.D., Sheppard M.C., Franklyn J.A. Clinical review 142: Cardiac dysrhythmias and thyroid dysfunction: The hidden menace? J Clin Endocrinol Metab. 2002; 87(3): 963–67. https://dx.doi.org/10.1210/jcem.87.3.8217.


32. Biondi B., Cooper D.S. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2008; 29(1): 76–131.https://dx.doi.org/10.1210/er.2006-0043.


33. Vidili G., Delitala A., Manetti R. Subclinical hyperthyroidism: The cardiovascular point of view. Eur Rev Med Pharmacol Sci. 2021; 25(8): 3264–71. https://dx.doi.org/10.26355/eurrev_202104_25735.


34. Gluvic Z., Obradovic M., Stewart A.J. et al. Levothyroxine treatment and the risk of cardiac arrhythmias – focus on the patient submitted to thyroid surgery. Front Endocrinol (Lausanne). 2021; 12: 758043. https://dx.doi.org/10.3389/fendo.2021.758043.


35. Meyerovitch J., Rotman-Pikielny P., Sherf M. et al. Serum thyrotropin measurements in the community: Five-year follow-up in a large network of primary care physicians. Arch Intern Med. 2007; 167(14): 1533–38. https://dx.doi.org/10.1001/archinte.167.14.1533.


36. Tonacchera M., Pinchera A., Vitti P. Assessment of nodular goitre. Best Pract Res Clin Endocrinol Metab. 2010; 24(1): 51–61.https://dx.doi.org/10.1016/j.beem.2009.08.008.


37. Brancatella A., Ricci D., Viola N. et al. Subacute thyroiditis after SARS-CoV-2 infection. J Clin Endocrinol Metab. 2020; 105(7): dgaa276. https://dx.doi.org/10.1210/clinem/dgaa276.


38. Lania A., Sandri M.T., Cellini M. et al. Thyrotoxicosis in patients with COVID-19: The THYRCOV study. Eur J Endocrinol. 2020; 183(4): 381–87. https://dx.doi.org/10.1530/EJE-20-0335.


39. Lodigiani C., Iapichino G., Carenzo L. et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020; 191: 9–14. https://dx.doi.org/10.1016/j.thromres.2020.04.024.


40. Barahona San Millan R., Tantinya Daura M., Hurtado Ganoza A., Recasens Sala M. Painless thyroiditis in SARS-CoV-2. Endocrinol Diabetes Nutr (Engl Ed). 2020; 68(10): 757–58. https://dx.doi.org/10.1016/j.endinu.2020.09.001. Online ahead of print.


41. Mateu-Salat M., Urgell E., Chico A. SARS-CoV-2 as a trigger for autoimmune disease: Report of two cases of Graves’ disease after COVID-19. J Endocrinol Invest. 2020; 43(10): 1527–28. https://dx.doi.org/10.1007/s40618-020-01366-7.


42. Murugan A.K., Alzahrani A.S. SARS-CoV-2 plays a pivotal role in inducing hyperthyroidism of Graves’ disease. Endocrine. 2021; 73(2): 243–54. https://dx.doi.org/10.1007/s12020-021-02770-6.


43. Pastor S., Molina A.Sr., De Celis E. Thyrotoxic crisis and COVID-19 Infection: An extraordinary case and literature review. Cureus. 2020; 12(11): e11305. https://dx.doi.org/10.7759/cureus.11305.


44. Pandya M., Thota G., Wang X., Luo H. Thyroiditis after coronavirus disease 2019 (COVID-19) mRNA vaccine: A case series. AACE Clin Case Rep. 2022; 8(3): 116–18. https://dx.doi.org/10.1016/j.aace.2021.12.002.


45. Bragazzi N.L., Hejly A., Watad A. et al. ASIA syndrome and endocrine autoimmune disorders. Best Pract Res Clin Endocrinol Metab. 2020; 34(1): 101412. https://dx.doi.org/10.1016/j.beem.2020.101412.


46. Pujol A., Gomez L.A., Gallegos C. et al. Thyroid as a target of adjuvant autoimmunity/inflammatory syndrome due to mRNA-based SARS-CoV2 vaccination: From Graves’ disease to silent thyroiditis. J Endocrinol Invest. 2022; 45(4): 875–82.https://dx.doi.org/10.1007/s40618-021-01707-0.


47. Lui D.T.W., Lee K.K., Lee C.H. et al. Development of Graves’ disease after SARS-CoV-2 mRNA vaccination: A case report and literature review. Front Public Health. 2021; 9: 778964. https://dx.doi.org/10.3389/fpubh.2021.778964.


48. Stavrakis S., Yu X., Patterson E. et al. Activating autoantibodies to the beta-1 adrenergic and m2 muscarinic receptors facilitate atrial fibrillation in patients with Graves’ hyperthyroidism. J Am Coll Cardiol. 2009; 54(14): 1309–16.https://dx.doi.org/10.1016/j.jacc.2009.07.015.


49. Weetman A.P. Graves’ disease. N Engl J Med. 2000; 343(17): 1236–48. https://dx.doi.org/10.1056/NEJM200010263431707.


50. Gencer B., Cappola A.R., Rodondi N., Collet T.H. Challenges in the management of atrial fibrillation with subclinical hyperthyroidism. Front Endocrinol (Lausanne). 2022; 12: 795492. https://dx.doi.org/10.3389/fendo.2021.795492.


51. Selmer C., Hansen M.L., Olesen J.B. et al. New-onset atrial fibrillation is a predictor of subsequent hyperthyroidism: A nationwide cohort study. PLoS One. 2013; 8(2): e57893. https://dx.doi.org/10.1371/journal.pone.0057893.


52. Klein I., Danzi S. Thyroid disease and the heart. Curr Probl Cardiol. 2016; 41(2): 65–92. https://dx.doi.org/10.1016/j.cpcardiol.2015.04.002.


53. Klein I., Danzi S. Thyroid disease and the heart. Circulation. 2007; 116(15): 1725–35.https://dx.doi.org/10.1161/CIRCULATIONAHA.106.678326.


54. Parmar M.S. Thyrotoxic atrial fibrillation. MedGenMed. 2005; 7(1): 74.


55. Shenfield G.M. Influence of thyroid dysfunction on drug pharmacokinetics. Clin Pharmacokinet. 1981; 6(4): 275–97.https://dx.doi.org/10.2165/00003088-198106040-00003.


56. Chan P.H., Hai J., Yeung C.Y. et al. Benefit of anticoagulation therapy in hyperthyroidism-related atrial fibrillation. Clin Cardiol. 2015; 38(8): 476–82. https://dx.doi.org/10.1002/clc.22427.


57. European Heart Rhythm Association; Heart Rhythm Society, Fuster V., Ryden L.E., Cannom D.S. et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation – executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation). J Am Coll Cardiol. 2006; 48(4): 854–906. https://dx.doi.org/10.1016/j.jacc.2006.07.009.


58. Souza M.V., Duarte M.M., Coeli C.M., Vaisman M. Atrial fibrillation and hyperthyroidism: Relation between transoesophageal markers of a thrombogenic milieu and clinical risk factors for thromboembolism. Clin Endocrinol (Oxf). 2012; 76(3): 448–53.https://dx.doi.org/10.1111/j.1365-2265.2011.04232.x.


59. Basaria S., Cooper D.S. Amiodarone and the thyroid. Am J Med. 2005; 118(7): 706–14. https://dx.doi.org/10.1016/j.amjmed.2004.11.028.


60. Narayana S.K., Woods D.R., Boos C.J. Management of amiodarone-related thyroid problems. Ther Adv Endocrinol Metab. 2011; 2(3): 115–26. https://dx.doi.org/10.1177/2042018811398516.


61. Batcher E.L., Tang X.C., Singh B.N. et al.; SAFE-T Investigators. Thyroid function abnormalities during amiodarone therapy for persistent atrial fibrillation. Am J Med. 2007; 120(10): 880–85. https://dx.doi.org/10.1016/j.amjmed.2007.04.022.


62. Biondi B., Bartalena L., Cooper D.S. et al. The 2015 European Thyroid Association guidelines on diagnosis and treatment of endogenous subclinical hyperthyroidism. Eur Thyroid J. 2015; 4(3): 149–63. https://dx.doi.org/10.1159/000438750.


63. Ross D.S., Burch H.B., Cooper D.S. et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 2016; 26(10): 1343–421. https://dx.doi.org/10.1089/thy.2016.0229.


About the Autors


Lyudmila A. Ruyatkina, Dr. med. habil., professor, professor of the Department of emergency therapy with endocrinology and occupational pathology of the Faculty of advanced training and professional retraining of physicians, Novosibirsk State Medical University of the Ministry of Healthcare of Russia. Address: 630091, Novosibirsk, 52 Krasny Prospect Str. E-mail: larut@list.ru
Dmitry S. Ruyatkin, PhD in Medicine, associate professor, associate professor of the Department of emergency therapy with endocrinology and occupational pathology of the Faculty of advanced training and professional retraining of physicians, Novosibirsk State Medical University of the Ministry of Healthcare of Russia. Address: 630091, Novosibirsk, 52 Krasny Prospect Str. E-mail: dr79@mail.ru


Similar Articles


Бионика Медиа