Oxidative stress in chronic obstructive pulmonary disease: Pathogenetic and clinical aspects


DOI: https://dx.doi.org/10.18565/therapy.2024.6.76-83

Budnevsky A.V., Avdeev S.N., Kravchenko A.Ya., Vostrikova K.V.

1) N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia; 2) I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)
Abstract. Article presents a review of the literature devoted to the study of oxidative stress (OS) influence at the pathogenesis and clinical course of chronic obstructive pulmonary disease (COPD). It follows from the analyzed works that in the pathogenesis of such a multifactorial disease as COPD, OS plays a significant role, supporting chronic inflammation, causing cellular aging and disorders of autophagy of reactive oxygen species. In recent years, biomarkers have been actively studied. They can be used to assess the severity and progression of COPD, which will allow the development of effective antioxidant therapy. Basing on the analysis of available studies, it could be considered to be promising to determine 8-isoprostane, nitric oxide, and melatonin levels as diagnostic markers of oxidative and nitrosative stress in case of COPD.

Literature


1. Российское респираторное общество. Федеральные клинические рекомендации: Хроническая обструктивная болезнь легких. Пересмотр: 2023 г. Доступ: https://spulmo.ru/upload/kr/HOBL_2023_draft.pdf?ysclid=lrq75428cz630397288 (дата обращения – 10.06.2024). (Russian Respiratory Society. Federal clinical guidelines: Chronic obstructive pulmonary disease. Revision: 2023. URL: https://spulmo.ru/upload/kr/HOBL_2023_draft.pdf?ysclid=lrq75428cz630397288 (date of access – 10.06.2024)).


2. Заболеваемость населения Российской Федерации по основным классам болезней. Росстат, официальная статистика, здравоохранение. Доступ: https://rosstat.gov.ru/folder/13721 (дата обращения – 10.06.2024). (Morbidity rate of the population of the Russian Federation by main classes of diseases. Federal State Statistics Service (Russia), official statistics, healthcare. URL: https://rosstat.gov.ru/folder/13721 (date of access – 10.06.2024) (In Russ.)).


3. World Health Organization. Chronic obstructive pulmonary disease (COPD). URL: https://www.who.int/ru/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (date of access – 10.06.2024).


4. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of COPD. URL: https://goldcopd.org/wp-content/uploads/2024/01/GOLD-2024_v1.2-11Jan24_WMV-1.pdf (date of access – 10.06.2024).


5. Białas A.J., Sitarek P., Miłkowska-Dymanowska J. et al. The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease. Oxid Med Cell Longev. 2016; 2016: 7808576.


https://doi.org/10.1155/2016/7808576. PMID: 28105251. PMCID: PMC5220474.


6. Barnes P.J. Inflammatory mechanisms in patients with chronic obstructive disease. J Allergy Clin Immunol. 2016; 138 (1): 16–27.


https://doi.org/10.1016/j.jaci.2016.05.011. PMID: 27373322.


7. Polverino F., Сelli B.R., Owen C.A. COPD as an endothelial disorder: endothelial injury linking lesions in the lungs and other organs. Pulm Circ. 2018; 8(1): 2045894018758528.


https://doi.org/10.1177/2045894018758528. PMID: 29468936. PMCID: PMC5826015.


8. Bernardo I., Bozinovski S., Vlahos R. Targeting oxidant-dependent mechanisms for the treatment of COPD and its comorbidities. Pharmacol Ther. 2015; 155: 60–79.


https://doi.org/10.1016/j.pharmthera.2015.08.005. PMID: 26297673.


9. Saburova A.M., Nasyrdzhonova H.R., Sharipova H.E., Kurbanova M.B. Features of free radical oxidation and metabolic activity of vascular endothelium in patients with chronic obstructive pulmonary disease. Avicenna’s Bulletin. 2019; 21(1): 38–42.


https://doi.org/10.25005/2074-0581-2019-21-1-38-42.


10. Stanojkovic I., Kotur-Stevuljevic J., Milenkovic B. et al. Pulmonary function, oxidative stress and inflammatory markers in severe COPD exacerbation. Respir Med. 2011; 105: S31–S37.


https://doi.org/10.1016/S0954-6111(11)70008-7. PMID: 22015083.


11. Arja C., Surapaneni K.M., Raya P. et al. Oxidative stress and antioxidant enzyme activity in South Indian male smokers with chronic obstructive pulmonary disease. Respirology. 2013; 18(7): 1069–75.


https://doi.org/10.1111/resp.12118. PMID: 23683270.


12. Singh S., Verma S.K., Kumar S. et al. Evaluation of oxidative stress and antioxidant status in chronic obstructive pulmonary disease. Scand J Immunol. 2017; 85(2): 130–37.


https://doi.org/10.1111/sji.12498. PMID: 28256060.


13. Hsieh M.H., Chen P.C., Hsu H.Y. et al. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell Mol Immunol. 2023; 20(1): 38–50.


https://doi.org/10.1038/s41423-022-00946-2. PMID: 36376488. PMCID: PMC9794778.


14. Zhao X., Zhang Q., Zheng R. The interplay between oxidative stress and autophagy in chronic obstructive pulmonary disease. Front Physiol. 2022; 13: 1004275.


https://doi.org/10.3389/fphys.2022.1004275. PMID: 36225291. PMCID: PMC9548529.


15. Albano G.D., Montalbano A.M., Gagliardo R., Profita M. Autophagy/mitophagy in airway diseases: Impact of oxidative stress on epithelial cells. Biomolecules. 2023; 13(8): 1217.


https://doi.org/10.3390/biom13081217. PMID: 37627282. PMCID: PMC10452925.


16. Sundar I.K., Yao H., Rahman I. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal. 2013; 18(15): 1956–71.


https://doi.org/10.1089/ars.2012.4863. PMID: 22978694. PMCID: PMC3624634.


17. Antune M.A., Lopes-Pacheco M., Rocco P.R. Oxidative stress-derived mitochondrial dysfunction in chronic obstructive pulmonary disease: A concise review. Oxid Med Cell Longev. 2021; 2021: 6644002.


https://doi.org/10.1155/2021/6644002. PMID: 37448755. PMCID: PMC10337713.


18. Sotgia S., Paliogiannis P., Sotgiu E. et al. Systematic review and meta-analysis of the blood glutathione redox state in chronic obstructive pulmonary disease. Antioxidants. 2020; 9(11): 1146.


https://doi.org/10.3390/antiox9111146. PMID: 33218130. PMCID: PMC7698942.


19. Wiegman C.H., Li F., Ryffel B. et al. Oxidative stress in ozone-induced chronic lung inflammation and emphysema: A facet of chronic obstructive pulmonary disease. Front Immunol. 2020; 11: 1957.


https://doi.org/10.3389/fimmu.2020.01957. PMID: 32983127. PMCID: PMC7492639.


20. Ma S.X., Xie G.F., Fang P. et al. Low 15d-PGJ2 status is associated with oxidative stress in chronic obstructive pulmonary disease patients. Inflamm Res. 2023; 72(2): 171–80.


https://doi.org/10.1007/s00011-022-01637-4. PMID: 36371490.


21. Ma L., Sun D., Xiu G. et al. Quantification of plasma 8-isoprostane by high-performance liquid chromatography with tandem mass spectrometry in a case-control study of lung cancer. Int J Environ Res Public Health. 2022; 19(19): 12488.


https://doi.org/10.3390/ijerph191912488. PMID: 36231826. PMCID: PMC9566031.


22. Drozdovszky O., Barta I., Antus B. Sputum eicosanoid profiling in exacerbations of chronic obstructive pulmonary disease. Respiration. 2014; 87(5): 408–15.


https://doi.org/10.1159/000358099. PMID: 24714447.


23. Santus P., Sola A., Carlucci P. et al. Lipid peroxidation and 5-lipoxygenase activity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005; 171(8): 838–43.


https://doi.org/10.1164/rccm.200404-558OC. PMID: 15579728.


24. Montuschi P., Barnes P.J., Ciabattoni G. Measurement of 8-isoprostane in exhaled breath condensate. Methods Mol Biol. 2010; 594: 73–84.


https://doi.org/10.1007/978-1-60761-411-1_5. PMID: 20072910.


25. Makris D., Paraskakis E., Korakas P. et al. Exhaled breath condensate 8-isoprostane, clinical parameters, radiological indices and airway inflammation in COPD. Respiration. 2008; 75(2): 138–44.


https://doi.org/10.1159/000106377. PMID: 17641539.


26. Inonu H., Doruk S., Sahin S. et al. Oxidative stress levels in exhaled breath condensate associated with COPD and smoking. Respir Care. 2012; 57(3): 413–19.


https://doi.org/10.4187/respcare.01302. PMID: 21968597.


27. Ween M.P., White J.B., Tran H.B. et al. The role of oxidised self-lipids and alveolar macrophage CD1b expression in COPD. Sci Rep. 2021; 11(1): 4106.


https://doi.org/10.1038/s41598-021-82481-0. PMID: 33602992. PMCID: PMC7892841.


28. Kazmierczak M., Ciebiada M., Pekala-Wojciechowska A. et al. Evaluation of markers of inflammation and oxidative stress in COPD patients with or without cardiovascular comorbidities. Heart Lung Circ. 2015; 24(8): 817–23.


https://doi.org/10.1016/j.hlc.2015.01.019. PMID: 25797323.


29. Kume H., Yamada R., Sato Y., Togawa R. Airway smooth muscle regulated by oxidative stress in COPD. Antioxidants. 2023; 12(1): 142.


https://doi.org/10.3390/antiox12010142. PMID: 36671004. PMCID: PMC9854973.


30. Santus P., Sola A., Carlucci P. et al. Lipid peroxidation and 5-lipoxygenase activity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005; 171(8): 838–43.


https://doi.org/10.1164/rccm.200404-558OC. PMID: 15579728.


31. Promsrisuk T., Kongsui R., Sriraksa N. et al. Fractional exhaled nitric oxide is correlated with pulmonary function in patients with stable chronic obstructive pulmonary disease. Naresuan Phayao Journal. 2021; 14(2): 39–50.


32. Brindicci C., Ito K., Torre O. et al. Effects of aminoguanidine, an inhibitor of inducible nitric oxide synthase, on nitric oxide production and its metabolites in healthy control subjects, healthy smokers, and COPD patients. Chest. 2009; 135(2): 353–67.


https://doi.org/10.1378/chest.08-0964. PMID: 18719059.


33. Liu J., Sandrini A., Thurston M.C. et al. Nitric oxide and exhaled breath nitrite/nitrates in chronic obstructive pulmonary disease patients. Respiration. 2007; 74(6): 617–23.


https://doi.org/10.1159/000106379. PMID: 17643055.


34. Lazar Z., Kelemen A., Galffy G. et al. Central and peripheral airway nitric oxide in patients with stable and exacerbated chronic obstructive pulmonary disease. J Breath Res. 2018; 12(3): 036017.


https://doi.org/10.1088/1752-7163/aac10a. PMID: 29813036.


35. See J., Bayot R. Correlation of fractional exhaled nitric oxide level with severity of COPD. Chest. 2017; 152(4): A804.


https://doi.org/10.1016/j.chest.2017.08.835.


36. Zhou A., Zhou Z., Deng D. et al. The value of FENO measurement for predicting treatment response in patients with acute exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2020; 15: 2257–66.


https://doi.org/10.2147/COPD.S263673. PMID: 33061343. PMCID: PMC7522317.


37. Liu X., Zhang H., Wang Y. et al. Fractional exhaled nitric oxide is associated with the severity of stable COPD. COPD. 2020; 17(2): 121–27.


https://doi.org/10.1080/15412555.2019.1704231. PMID: 32116037.


38. Mazzoccoli G., Kvetnoy I., Mironova E. et al. The melatonergic pathway and its interactions in modulating respiratory system disorders. Biomed Pharmacother. 2021; 137: 111397.


https://doi.org/10.1016/j.biopha.2021.111397. PMID: 33761613.


39. Будневский А.В., Цветикова Л.Н., Овсянников Е.С., Гончаренко О.В. Мелатонин: роль в развитии хронической обструктивной болезни легких. Пульмонология. 2016; 26(3): 372–378. (Budnevsky A.V., Tsvetikova L.N., Ovsyannikov E.S., Goncharenko O.V. Melatonin: role in the development of chronic obstructive pulmonary disease. Pulmonologiya = Pulmonology. 2016; 26(3): 372–378 (In Russ.)).


https://doi.org/10.18093/0869-0189-2016-26-3-372-378. EDN: WTIIMP.


40. Арушанян Э.Б. Защитная роль мелатонина при нарушениях мозгового кровообращения. РМЖ. 2010; 18(8): 495–499. (Arushanyan E.B. The protective role of melatonin in disorders of cerebral circulation. Russkiy meditsinskiy zhurnal = Russian Medical Journal. 2010; 18(8): 495–499 (In Russ.)). EDN: PIQCAX.


41. Веснушкин Г.М., Плотникова Н.А., Семенченко А.В., Анисимов В.Н. Мелатонин угнетает канцерогенез легких, индуцируемый уретаном у мышей. Вопросы онкологии. 2006; 52(2): 164–168. (Vesnushkin G.M., Plotnikova N.A., Semenchenko A.V., Anisimov V.N. Melatonin inhibits lung carcinogenesis induced by urethane in mice. Voprosy onkologii = Issues of Oncology. 2006; 52(2): 164–168 (In Russ.)). EDN: KVXSFR.


42. Анисимов В.Н. Мелатонин: роль в организме, применение в клинике. Система. 2007; 40. (Anisimov V.N. Melatonin: Role in the body, application in the clinic. Sistema = System. 2007; 40 (In Russ.)).


43. Mahalanobish S., Dutta S., Saha S., Sil P.C. Melatonin induced suppression of ER stress and mitochondrial dysfunction inhibited NLRP3 inflammasome activation in COPD mice. Food Chem Toxicol. 2020; 144: 111588.


https://doi.org/10.1016/j.fct.2020.111588. PMID: 32738376.


44. Morvaridzadeh M., Nachvak S.M., Agah S. et al. Effect of soy products and isoflavones on oxidative stress parameters: A systematic review and meta-analysis of randomized controlled trials. Food Research International. 2020; 137: 109578.


https://doi.org/10.1016/j.foodres.2020.109578. PMID: 33233189.


45. Авдеев С.Н., Лещенко И.В., Айсанов З.Р. Новая концепция и алгоритм ведения пациентов с хронической обструктивной болезнью легких. Пульмонология. 2023; 33(5): 587–594. (Avdeev S.N., Leshchenko I.V., Aisanov Z.R. A new concept and algorithm for the management of patients with chronic obstructive pulmonary disease. Pulmonologiya = Pulmonology. 2023; 33(5): 587–594 (In Russ.)).


https://doi.org/10.18093/0869-0189-2023-33-5-587-594. EDN: XWOLJE.


46. Cazzola M., Calzetta L., Page C. et al. Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: A meta-analysis. Eur Respir Rev. 2015; 24(137): 451–61.


https://doi.org/10.1183/16000617.00002215. PMID: 26324807. PMCID: PMC9487680.


47. Poole P., Black P.N., Cates C.J. Mucolytic agents for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012; (8): CD001287.


https://doi.org/10.1002/14651858.cd001287.pub4. PMID: 22895919.


48. Zeng Z., Yang D., Huang X., Xiao Z. Effect of carbocisteine on patients with COPD: A systematic review and meta-analysis. Int J Chron Obstruct Pulmon. Dis. 2017; 12: 2277–83.


https://doi.org/10.2147/COPD.S140603. PMID: 28814855. PMCID: PMC5546781.


49. Dal Negro R., Wedzicha J., Iversen M. et al. Effect of erdosteine on the rate and duration of COPD exacerbations: The RESTORE study. Eur Respir J. 2017; 50(4): 1700711.


https://doi.org/10.1183/13993003.00711-2017. PMID: 29025888. PMCID: PMC5678897.


50. Calverley P.M., Page C., Dal Negro R.W. et al. Effect of erdosteine on COPD exacerbations in COPD patients with moderate airflow limitation. Int J Chron Obstruct Pulmon Dis. 2019; 14: 2733–44.


https://doi.org/10.2147/copd.s221852. PMID: 31819405. PMCID: PMC6896911.


51. Barnes P.J. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants. 2022; 11(5): 965.


https://doi.org/10.3390/antiox11050965. PMID: 35624831. PMCID: PMC9138026.


52. Fairley L.H., Das S., Dharwal V. et al. Mitochondria-targeted antioxidants as a therapeutic strategy for chronic obstructive pulmonary disease. Antioxidants. 2023; 12(4): 973.


https://doi.org/10.3390/antiox12040973. PMID: 37107348. PMCID: PMC10135688.


About the Autors


Andrey V. Budnevsky, MD, Dr.Sci. (Medicine), professor, Honored Inventor of the Russian Federation, vice-rector for scientific and innovation activities, head of the Department of faculty therapy, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia. Address: 394036, Voronezh, 10 Studencheskaya St.
E-mail: avbudnevski@vrngmu.ru
ORCID: https://orcid.org/0000-0002-1171-2746
Sergey N. Avdeev, MD, Dr.Sci. (Medicine), professor, academician of RAS, head of the Department of pulmonology of N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University), director of the National Medical Research Center for “Pulmonology” profile, chief external expert-pulmonologist of the Ministry of Healthcare of Russia. Address: 119991, Moscow, 8/2 Trubetskaya St.
E-mail: serg_avdeev@list.ru
ORCID: https://orcid.org/0000-0002-5999-2150
Andrey Ya. Kravchenko, MD, Dr.Sci. (Medicine), professor of the Department of faculty therapy, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia. Address: 394036, Voronezh, 10 Studencheskaya St.
E-mail: k.f.fer@vrngmu.ru
ORCID: https://orcid.org/0000-0003-0297-1735
Karina V. Vostrikova, MD, assistant at the Department of faculty therapy, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia. Address: 394036, Voronezh, 10 Studencheskaya St.
E-mail: prudnikova.2012@inbox.ru
ORCID: https://orcid.org/0000-0003-2103-5328


Similar Articles


Бионика Медиа