The state of microcirculation in patients with relapsing-remitting multiple sclerosis


DOI: https://dx.doi.org/10.18565/therapy.2020.5.108-116

Traktirskaya O.A., Adasheva T.V., Zadionchenko V.S., Pavlov S.V., Boyko A.N., Popova E.V.

1) A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia; 2) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow
The aim of the study is to study the characteristics of tissue microcirculation in patients with relapsing-remitting multiple sclerosis.
Material and methods. The study included 45 patients with relapsing-remitting multiple sclerosis (17 men and 28 women), age 28 [24; 32] years, disease duration 5.5 [2; 7] years. The control group included practically healthy patients, age 30 [25; 33] years. Patients with multiple sclerosis were examined neurologically with Expanded Disability Disease Score rating of disability. Instrumental methods included laser Doppler flowmetry followed by an occlusive test to assess the state of the microvasculation. Laboratory methods included clinical and biochemical analysis of blood with the determination of lipid profile, glycemia.
Results. When analyzing the contribution of various rhythmic components to the microcirculation in patients with a relapsing remitting MS, the prevalence of «passive» mechanisms of microcirculation regulation and a decrease in «active» was revealed. In assessing the microcirculation, the stasis type of microcirculation was detected in the whole group of MS patients. In the control group, the normacirculatory type prevailed (86.8%), in 6.6% of patients, the stasis type of microcirculation was detected, 6,6% of patients was the hyperemic type.
Conclusion. The imbalance of the mechanisms of regulation of peripheral microcirculation with a predominance of «passive» and a decrease in the «active» regulation mechanisms in patients with multiple sclerosis is most likely associated with impaired neurogenic control of the microvasculature. The prevalence of the stasis type of microcirculation in the group of patients with MS indicates deep violations of tissue perfusion with the breakdown of the mechanisms of microcirculation control and the regulation of transcapillary metabolism.
Keywords: multiple sclerosis, microcirculation, laser Doppler flowmetry

Literature



  1. Thompson A.J., Baranzini S.E., Geurts J. et al. Multiple sclerosis. Lancet. 2018; 391(10130): 1622–36. doi: 10.1016/S0140-6736(18)30481-1.

  2. Kang J.H., Chen Y.H., Lin H.C. Comorbidities amongst patients with multiple sclerosis: A population-based controlled study. Eur J Neurol. 2010; 17: 1215–19. doi: 10.1111/j.1468-1331.2010.02971.

  3. Christiansen C.F., Christensen S., Farkas D.K. et al. Risk of arterial cardiovascular diseases in patients with multiple sclerosis: A population-based cohort study. Neuroepidemiology. 2010; 35: 267–74. doi: 10.1159/000320245.

  4. Jadidi E., Mohammadi M., Moradi T. High risk of cardiovascular diseases after diagnosis of multiple sclerosis. Mult Scler. 2013; 19: 1336–40. doi: 10.1177/1352458513475833.

  5. Wenz I., Dalgas U., Stenager E. et al. Risk factors related to cardiovascular diseases and the metabolic syndrome in multiple sclerosis – a systematic review. Mult Scler. 2013; 19: 1556–64. doi: 10.1177/1352458513504252.

  6. Wright C.I., Kroner C.I., Draijer R. Non-invasive methods and stimuli for evaluating the skin’s microcirculation. J Pharmacol Toxicol Methods. 2006; 54(1): 1–25. doi: 10.1016/j.vascn.2005.09.004.

  7. Marrie R.A., Rudick R., Horwitz R. et al. Vascular comorbidity in associated with more rapid disability progression in multiple sclerosis. Neurology. 2010; 74: 1041–47. doi: 10.1212/WNL.0b013e3181d6b125.

  8. Murray T.J. The cardiac effects of mitoxantrone: Do the benefits in multiple sclerosis outweigh the risks? Expert Opin Drug Saf. 2006; 5: 265–74. doi: 10.1517/14710338.5.265.

  9. Александров Д.А., Кубарко А.И., Башаркевич Н.А. с соавт. Микроциркуляция в вопросах и ответах: учебно-методическое пособие. Минск: БГМУ, 2017; с. 26–32. [Alexandrov D.A., Kubarko A.I., Basharevich N.A. et al. Microcirculation in questions and answers: textbook-method allowance. Minsk: BGMU, 2017; pp. 26–32. (In Russ.)].

  10. Хугаева В.К. Легенды и реальные закономерности микроциркуляции. Патогенез. 2013; 2: 32–41. [Khugaev V.K. Legends and real patterns of microcirculation. Patogenez. 2013; 2: 32–41 (In Russ.)].

  11. Крупаткин А.И., Сидоров В.В. Лазерная допплеровская флоуметрия микроциркуляции крови. М.: Медицина, 2005; с. 125–256. [Krupatkin A.I., Sidorov V.V. Laser Doppler flowmetry of blood microcirculation. M.: Meditsina, 2005; pp. 125–256 (In Russ.)].

  12. Lapitan D., Rogatkin D., Persheyev S., Kotliar K. False spectra formation in the differential two-channel scheme of the laser Doppler flowmeter. Biomed Tech (Berl). 2018; 63(4): 439–44. doi: 10.1515/bmt-2017-0060.

  13. Лапитан Д.Г., Рогаткин Д.А. Функциональные исследования системы микроциркуляции крови методом лазерной допплеровской флоуметрии в клинической медицине: проблемы и перспективы. Альманах клинической медицины. 2016; 2: 249–59. [Lapitan D.G., Rogatkin D.A. Functional studies of the blood microcirculation system by laser Doppler flowmetry in clinical medicine: problems and prospects. Almanakh klinicheskoy meditsiny. 2016; 2: 249–59 (In Russ.)]. doi: 10.18786/2072-0505-2016-44-2-249-259.

  14. Krasnikov G.V., Tyurina M.Y., Tankanag A.V. et al. Analysis of heart rate variability and skin blood flow oscillations under deep controlled breathing. Respir Physiol Neurobiol. 2013; 185(3): 562–70. doi: 10.1016/j.resp.2012.11.007.

  15. Трактирская О.А., Адашева Т.В., Попова Е.В., Бойко А.Н. Состояние сердечно-сосудистой системы у больных с ремиттирующим течением рассеянного склероза. Архивъ внутренней медицины. 2019; 9(2): 133–139. [Traktirskaya O.A., Adasheva T.V., Popova E.V., Boyko A.N. The state of the cardiovascular system in patients with remitting course of multiple sclerosis. Archive of Internal Medicine. 2019; 9(2): 133–139 (In Russ.)]. doi: 10.20514/2226-6704-2019-9-2-133-139.

  16. Hu C.L., Lin Z.S., Chen Y.Y. et al. Portable laser Doppler flowmeter for microcirculation detection. Biomed Eng Letters. 2013; 3(2): 109–14. doi: 10.1007/s13534-013-0095-x.

  17. Маколкин В.И., Подзолков В.И., Бранько В.В. Микроциркуляция в кардиологии. М.: Визарт, 2004; с. 105–110. [Makolkin V.I., Podzolkov V.I., Branko V.V. Microcirculation in cardiology. M.: Visart, 2004; pp. 105–110 (In Russ.)].

  18. Трифонова С.С., Гайсенок О.В., Сидоренко Б.А. Применение методов оценки жесткости сосудистой стенки в клинической практике: возможности сердечно-лодыжечного сосудистого индекса. Кардиология. 2015; 4: 55–61. [Trifonova S.S., Gaisenok O.V., Sidorenko B.A. The use of methods for assessing the stiffness of the vascular wall in clinical practice: the capabilities of the cardio-ankle vascular index. Kardiologiya. 2015; 4: 55–61 (In Russ.)]. doi: 10.18565/cardio.2015.4.61-66.

  19. Meyer C., de Vries G., Davidge S., Mayes D.C. Reassessing the mathematical modeling of the contribution of vasomotion to vascular resistance. J Appl Physiol (1985). 2002; 92(2): 888–89. doi: 10.1152/jappl.2002.92.2.888.

  20. Malpas S.C. The rhythmicity of sympathetic nerve activity. Prog Neurobiol. 1998; 56(1): 65–96. doi: 10.1016/s0301-0082(98)00030-6.

  21. Guild S.-J., Barrett C.J., McBryde F.D. et al. Quantifying sympathetic nerve activity: problems, pitfalls and the need for standardization. Exp Physiol. 2010; 95(1): 41–50. doi: 10.1113/expphysiol.2008.046300.

  22. Kastrup J., Buhlow J., Lassen N.A. Vasomotion in human skin before and after local heating recorded with laser Doppler flowmetry. A method for indication of vasomotion. Int J Microcirc Clin Exp. 1989; 8(2): 205–15.

  23. Kvandal P., Stefanovska A., Veber M. et al. Regulation of human cutaneous circulation evaluated by laser Doppler flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide and prostangladines. Microvasc Res. 2003; 65(3): 160–71. doi: 10.1016/s0026-2862(03)00006-2.

  24. Коняева Т.И., Красников Г.В., Танканаг А.В. с соавт. Оценка чувствительности показателей микроциркуляции к оксиду азота и ацетилхолину. Материалы международной конференции «Гемореология и микроциркуляция». Ярославль. 2003; с. 133. [Konyaeva T.I., Krasnikov G.V., Tankanag A.V. et al. Assessment of the sensitivity of microcirculation to nitric oxide and acetylcholine. Materials of the international conference «Hemorheology and microcirculation». Yaroslavl. 2003; p. 133 (In Russ.)].

  25. Bi R., Dong J., Poh C.L., Lee K. Optical methods for blood perfusion measurement – theoretical comparison among four different modalities. J Opt Soc Am A Opt Image Sci Vis. 2015; 32(5): 860–66. doi: 10.1364/JOSAA.32.000860.

  26. Козлов В.И., Гурова О.А., Литвин Ф.Б. Расстройства тканевого кровотока, их патогенез и классификация. Регионарное кровообращение и микроциркуляция. 2012; 1: 75–76. [Kozlov V.I., Gurova O.A., Litvin F.B. Tissue blood flow disorders, their pathogenesis and classification. Regionarnoe krovoobraschenie i microtsirkulyatsiya. 2012; 1: 75–76 (In Russ.)].

  27. Macefield V.G., Wallin G. Respiratory and cardiac modulation of single sympathetic vasoconstrictor and sudomotor neurons to human skin. J Physiol. 1999; 516 (Pt 1): 303–14. doi: 10.1111/j.1469-7793.1999.303aa.x.

  28. Рогаткин Д.А. Физические основы современных оптических методов исследования микрогемодинамики in vivo. Медицинская физика. 2017; 4: 75–93. [Rogatkin D.A. Physical foundations of modern optical methods for studying microhemodynamics in vivo. Meditsinskaya fizika. 2017; 4: 75–93 (In Russ.)].


About the Autors


Olga A. Traktirskaya, postgraduate student of the Department of polyclinic therapy of A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia. Address: 129110, Moscow, 61/2 Schepkin Str., build 9. Tel.: +7 (967) 267-75-70. E-mail: olga-mgmsu@mail.ru. ORCID: 0000-0001-6011-4104
Tatiana V. Adasheva, MD, professor of the Department of polyclinic therapy of A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia. Address: 129110, Moscow, 61/2 Schepkin Str., build 9. Tel.: +7 (903) 629-46-07. E-mail: adashtv@mail.ru. ORCID: 0000-0002-3763-8994
Vladimir S. Zadionchenko, MD, professor of the Department of polyclinic therapy of A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia. Address: 129110, Moscow, 61/2 Schepkin Str., build 9. Tel.: +7 (985) 761-74-51. E-mail: z7vladimir@bk.ru. ORCID: 0000-0003-2377-5266
Sergey V. Pavlov, PhD, assistant of the Department of polyclinic therapy of A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia. Address: 129110, Moscow, 61/2 Schepkin Str., build 9. Tel.: +7(903)-215-65-47. E-mail: paseva@list.ru. ORCID: 0000-0001-7188-1659
Ekaterina V. Popova, MD, assistant of the Department of neurology, neurosurgery and medical genetics of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow,
1 Ostrovityaninov Str. Tel.: +7 (905) 757-84-70. ORCID: 0000-0003-2676-452X
Aleksey N. Boyko, MD, professor of the Department of neurology, neurosurgery and medical genetics of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow,
1 Ostrovityaninov Str. E-mail: boykoan13@gmail.com. ORCID: 0000-0002-2975-4151


Бионика Медиа