Damage of the kidneys, liver and skeletal muscles in patients with heart failure with preserved ejection fraction: independent processes or links in a chain?


DOI: https://dx.doi.org/10.18565/therapy.2021.3.59-67

Pyatskaya A.V., Dzhioyeva O.N., Drapkina О.М.

National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia, Moscow
Abstract. Patients with heart failure with preserved ejection fraction are characterized by multimorbidity and phenotypic heterogeneity. Kidney, liver and skeletal muscles diseases are frequent among these patients. In the independent processes of the development of non-cardiac diseases it is possible to identify the common predisposing factors, components of pathogenesis and the relationship with heart damage. Dysfunction of one organ often leads to damage in another, creating an endless circle of pathological events.
Keywords: heart failure with preserved ejection fraction, chronic kidney disease, non-alcoholic fatty liver disease, sarcopenia, chronic systemic inflammation, endothelial dysfunction

Literature



  1. Фомин И.В. Хроническая сердечная недостаточность в Российской Федерации: что сегодня мы знаем и что должны делать. Российский кардиологический журнал. 2016; 8: 7–13. [Fomin I.V. Chronic heart failure in Russian Federation: what do we know and what to do. Rossiyskiy kardiologicheskiy zhurnal = Russian journal of cardiology. 2016; 8: 7–13 (In Russ.)]. doi: https://doi.org/10.15829/1560-4071-2016-8-7-13.

  2. Мареев Ю.В., Мареев В.Ю. Характеристика и лечение пациентов с ХСН, госпитализированных в стационар. Кардиология. 2017; S4: 20–30. [Mareev Yu.V., Mareev V.Yu. Characteristics and treatment of hospitalized patients with CHF. Kardiologiya = Cardiology. 2017; 4S: 20–30 (In Russ.)]. doi: https://doi.org/ 10.18087/cardio.2433.

  3. Cheng R.K., Cox M., Neely M.L. et al. Outcomes in patients with heart failure with preserved, borderline, and reduced ejection fraction in the Medicare population. Am Heart J. 2014; 168(5): 721–30. doi: 10.1016/j.ahj.2014.07.008.

  4. Shah K.S., Xu H., Matsouaka R.A. et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol. 2017; 70(20): 2476–86. doi: 10.1016/j.jacc.2017.08.074.

  5. Unger E.D., Dubin R.F., Deo R. et al. Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2016; 18(1): 103–12. doi: 10.1002/ejhf.445.

  6. Prenner S.B., Kumar A., Zhao L. et al. Effect of serum albumin levels in patients with heart failure with preserved ejection fraction (from the TOPCAT trial). Am J Cardiol. 2020; 125(4): 575–82. doi: 10.1016/j.amjcard.2019.11.006.

  7. Konishi M., Kagiyama N., Kamiya K. et al. Impact of sarcopenia on prognosis in patients with heart failure with reduced and preserved ejection fraction. Eur J Prev Cardiol. 2020: zwaa117. doi: 10.1093/eurjpc/zwaa117.

  8. Paulus W.J., Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013; 62(4): 263–71. doi: 10.1016/j.jacc.2013.02.092.

  9. Sanders-van W.S., van Empel V., Davarzani N. et al. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur J Heart Fail. 2015; 17(10): 1006–14. doi: 10.1002/ejhf.414.

  10. Putko B.N., Wang Z., Lo J. et al. Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in heart failure with preserved ejection fraction relative to heart failure with reduced ejection fraction: evidence for a divergence in pathophysiology. PLoS One. 2014; 9(6): e99495. doi: 10.1371/journal.pone.0099495.

  11. Bielecka-Dabrowa A., Sakowicz A., Misztal M. et al. Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies. Int J Cardiol. 2016; 221: 1073–80. doi: 10.1016/j.ijcard.2016.07.150.

  12. Kloch M., Stolarz-Skrzypek K., Olszanecka A. et al. Inflammatory markers and left ventricular diastolic dysfunction in a family-based population study. Kardiol Pol. 2019; 77(1): 33–39. doi: 10.5603/KP.a2018.0214.

  13. Lam C.S., Donal E., Kraigher-Krainer E., Vasan R.S. Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail. 2011; 13(1): 18–28. doi: 10.1093/eurjhf/hfq121.

  14. Gori M., Senni M., Gupta D.K. et al. Association between renal function and cardiovascular structure and function in heart failure with preserved ejection fraction. Eur Heart J. 2014; 35(48): 3442–51. doi: 10.1093/eurheartj/ehu254.

  15. Wang X., Hao G., Chen L. et al. Heart failure and left ventricular dysfunction in older patients with chronic kidney disease: the China Hypertension Survey (2012–2015). J Geriatr Cardiol. 2020; 17(10): 597–603. doi: 10.11909/j.issn.1671-5411.2020.10.001.

  16. House A.A., Wanner C., Sarnak M.J. et al. Heart failure in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019; 95(6): 1304–17. doi: 10.1016/j.kint.2019.02.022.

  17. Ledoux P. Les cardio-renaux [Cardiorenal syndrome]. Avenir Med. 1951; 48(8): 149–53.

  18. Ronco C., McCullough P., Anker S.D. et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J. 2010; 31(6): 703–11. doi: 10.1093/eurheartj/ehp507.

  19. Zannad F., Rossignol P. Cardiorenal syndrome revisited. Circulation. 2018; 138(9): 929–44. doi: 10.1161/CIRCULATIONAHA.117.028814.

  20. Available at: https://nccd.cdc.gov/CKD/ (date of access – 29.11.2020).

  21. Perry H.M., Okusa M.D. Endothelial dysfunction in renal interstitial fibrosis. Nephron. 2016; 134(3): 167–71. doi: 10.1159/000447607.

  22. Шамхалова М.Ш., Курумова К.О., Шестакова М.В. Факторы тубулоинтерстициального поражения почек при сахарном диабете. Сахарный диабет. 2009; 4: 61–65. [Shamkhalova M.S., Kurumova K.O., Shestakova M.V. Factors of tubulointerstitial lesions in diabetic kidneys. Sakharny diabet = Diabetes mellitus. 2009; 4: 61–65 (In Russ.)]. doi: https://doi.org/10.14341/2072-0351-5707.

  23. Ott C., Bosch A., Winzer N. et al. Effects of the nitric oxide synthase inhibitor ronopterin (VAS203) on renal function in healthy volunteers. Br J Clin Pharmacol. 2019; 85(5): 900–07. doi: 10.1111/bcp.13870.

  24. Lopez-Novoa J.M., Martinez-Salgado C., Rodriguez-Pena A.B., Lopez-Hernandez F.J. Common pathophysiological mechanisms of chronic kidney disease: therapeutic perspectives. Pharmacol Ther. 2010; 128(1): 61–81. doi: 10.1016/j.pharmthera.2010.05.006.

  25. Singh A., Ramnath R.D., Foster R.R. et al. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One. 2013; 8(2): e55852. doi: 10.1371/journal.pone.0055852.

  26. Martens R.J.H., Houben A.J.H.M., Kooman J.P. et al. Microvascular endothelial dysfunction is associated with albuminuria the Maastricht Study. J Hypertens. 2018; 36(5): 1178–87. doi: 10.1097/HJH.0000000000001674.

  27. Agrawal A., Naranjo M., Kanjanahattakij N. et al. Cardiorenal syndrome in heart failure with preserved ejection fraction-an under-recognized clinical entity. Heart Fail Rev. 2019; 24(4): 421–37. doi: 10.1007/s10741-018-09768-9.

  28. Montero D., Haider T., Barthelmes J. et al. Age-dependent impairment of the erythropoietin response to reduced central venous pressure in HFpEF patients. Physiol Rep. 2019; 7(5): e14021. doi: 10.14814/phy2.14021.

  29. Obokata M., Reddy Y.N.V., Melenovsky V. et al. Myocardial injury and cardiac reserve in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2018; 72(1): 29-40. doi: 10.1016/j.jacc.2018.04.039.

  30. Wolsk E., Kaye D., Borlaug B.A. et al. Resting and exercise haemodynamics in relation to six-minute walk test in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2018; 20(4): 715–22. doi: 10.1002/ejhf.976.

  31. Damman K., Testani J.M. The kidney in heart failure: an update. Eur Heart J. 2015; 36(23): 1437–44. doi: 10.1093/eurheartj/ehv010.

  32. Ioannou K., Stel V.S., Dounousi E. et al. Inflammation, endothelial dysfunction and increased left ventricular mass in chronic kidney disease (CKD) patients: A longitudinal study. PLoS One. 2015; 10(9): e0138461. doi: 10.1371/journal.pone.0138461.

  33. Wells M.L., Fenstad E.R., Poterucha J.T. et al. Imaging findings of congestive hepatopathy. radiographics. 2016; 36(4):1024–37. doi: 10.1148/rg.2016150207.

  34. Samsky M.D., Patel CB, DeWald T.A. et al. Cardiohepatic interactions in heart failure: an overview and clinical implications. J Am Coll Cardiol. 2013; 61(24): 2397–2405. doi: 10.1016/j.jacc.2013.03.042.

  35. Brea A., Puzo J. Non-alcoholic fatty liver disease and cardiovascular risk. Int J Cardiol. 2013; 167(4): 1109–17. doi: 10.1016/j.ijcard.2012.09.085.

  36. Miller A., McNamara J., Hummel S.L. et al. Prevalence and staging of non-alcoholic fatty liver disease among patients with heart failure with preserved ejection fraction. Sci Rep. 2020; 10(1): 12440. doi: 10.1038/s41598-020-69013-y.

  37. Pasarin M., La Mura V., Gracia-Sancho J. et al. Sinusoidal endothelial dysfunction precedes inflammation and fibrosis in a model of NAFLD. PLoS One. 2012; 7(4): e32785. doi: 10.1371/journal.pone.0032785.

  38. Miyao M., Kotani H., Ishida T. et al. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab Invest. 2015; 95(10): 1130–44. doi: 10.1038/labinvest.2015.95.

  39. Kus E., Kaczara P., Czyzynska-Cichon I. et al. LSEC fenestrae are preserved despite pro-inflammatory phenotype of liver sinusoidal endothelial cells in mice on high fat diet. Front Physiol. 2019; 10: 6. doi: 10.3389/fphys.2019.00006.

  40. Gonzalez-Paredes F.J., Hernandez Mesa G., Morales Arraez D. et al. Contribution of cyclooxygenase end products and oxidative stress to intrahepatic endothelial dysfunction in early non-alcoholic fatty liver disease. PLoS One. 2016; 11(5): e0156650. doi: 10.1371/journal.pone.0156650.

  41. Persico M., Masarone M., Damato A. et al. «Non alcoholic fatty liver disease and eNOS dysfunction in humans». BMC Gastroenterol. 2017; 17(1): 35. doi: 10.1186/s12876-017-0592-y.

  42. So-Armah K.A., Lim J.K., Lo Re V. 3rd et al. FIB-4 stage of liver fibrosis is associated with incident heart failure with preserved, but not reduced, ejection fraction among people with and without HIV or hepatitis C. Prog Cardiovasc Dis. 2020; 63(2): 184–91. doi: 10.1016/j.pcad.2020.02.010.

  43. Yoshihisa A., Sato Y., Yokokawa T. et al. Liver fibrosis score predicts mortality in heart failure patients with preserved ejection fraction. ESC Heart Fail. 2018; 5(2): 262–70. doi: 10.1002/ehf2.12222.

  44. Mantovani A., Pernigo M., Bergamini C. et al. Nonalcoholic fatty liver disease is independently associated with early left ventricular diastolic dysfunction in patients with type 2 diabetes. PLoS One. 2015; 10(8): e0135329. doi: 10.1371/journal.pone.0135329.

  45. Wijarnpreecha K., Lou S., Panjawatanan P. et al. Association between diastolic cardiac dysfunction and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Dig Liver Dis. 2018; 50(11): 1166–75. doi: 10.1016/j.dld.2018.09.004.

  46. Chung G.E., Lee J.H., Lee H. et al. Nonalcoholic fatty liver disease and advanced fibrosis are associated with left ventricular diastolic dysfunction. Atherosclerosis. 2018; 272: 137–44. doi: 10.1016/j.atherosclerosis.2018.03.027.

  47. Packer M. Atrial fibrillation and heart failure with preserved ejection fraction in patients with nonalcoholic fatty liver disease. Am J Med. 2020; 133(2): 170–77. doi: 10.1016/j.amjmed.2019.09.002.

  48. van Woerden G., Gorter T.M., Westenbrink B.D. et al. Epicardial fat in heart failure patients with mid-range and preserved ejection fraction. Eur J Heart Fail. 2018; 20(11): 1559–66. doi: 10.1002/ejhf.1283.

  49. Haykowsky M.J., Brubaker P.H., John J.M. et al. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol. 2011; 58(3): 265–74. doi: 10.1016/j.jacc.2011.02.055.

  50. Bhella P.S., Prasad A., Heinicke K. et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail. 2011; 13(12): 1296–304. doi: 10.1093/eurjhf/hfr133.

  51. Haykowsky M.J., Kouba E.J., Brubaker P.H. et al. Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Cardiol. 2014; 113(7): 1211–16. doi: 10.1016/j.amjcard.2013.12.031.

  52. Shah S.J., Kitzman D.W., Borlaug B.A. et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: A multiorgan roadmap. Circulation. 2016; 134(1): 73–90. doi: 10.1161/CIRCULATIONAHA.116.021884.

  53. Haykowsky M.J., Brubaker P.H., Morgan T.M. et al. Impaired aerobic capacity and physical functional performance in older heart failure patients with preserved ejection fraction: role of lean body mass. J Gerontol A Biol Sci Med Sci. 2013; 68(8): 968–75. doi: 10.1093/gerona/glt011.

  54. Kitzman D.W., Nicklas B., Kraus W.E. et al. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2014; 306(9): H1364–70. doi: 10.1152/ajpheart.00004.2014.

  55. Molina A.J., Bharadwaj M.S., Van Horn C. et al. Skeletal muscle mitochondrial content, oxidative capacity, and Mfn2 expression are reduced in older patients with heart failure and preserved ejection fraction and are related to exercise intolerance. JACC Heart Fail. 2016; 4(8): 636–45. doi: 10.1016/j.jchf.2016.03.011.

  56. Weiss K., Schar M., Panjrath G.S. et al. Fatigability, exercise intolerance, and abnormal skeletal muscle energetics in heart failure. Circ Heart Fail. 2017; 10(7): e004129. doi: 10.1161/CIRCHEARTFAILURE.117.004129.

  57. Curcio F., Testa G., Liguori I. et al. Sarcopenia and heart failure. Nutrients. 2020; 12(1): 211. doi: 10.3390/nu12010211.

  58. Cruz-Jentoft A.J., Bahat G., Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48(1): 16–31. doi: 10.1093/ageing/afy169.

  59. Stenholm S., Harris T.B., Rantanen T. et al. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care. 2008; 11(6): 693–700. doi: 10.1097/MCO.0b013e328312c37d.

  60. Wiedmer P., Jung T., Castro J.P. et al. Sarcopenia – molecular mechanisms and open questions. Ageing Res Rev. 2021; 65: 101200. doi: 10.1016/j.arr.2020.101200.

  61. Schaap L.A., Pluijm S.M., Deeg D.J., Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006; 119(6): 526.e9–17. doi: 10.1016/j.amjmed.2005.10.049.

  62. Schaap L.A., Pluijm S.M., Deeg D.J. et al. Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci. 2009; 64(11): 1183–89. doi: 10.1093/gerona/glp097.

  63. Kalinkovich A., Livshits G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev. 2017; 35: 200–21. doi: 10.1016/j.arr.2016.09.008.

  64. Amarasekera A.T., Chang D., Schwarz P., Tan T.C. Does vascular endothelial dysfunction play a role in physical frailty and sarcopenia? A systematic review. Age Ageing. 2020: afaa237. doi: 10.1093/ageing/afaa237.

  65. Dos Santos M.R., Saitoh M., Ebner N. et al. Sarcopenia and endothelial function in patients with chronic heart failure: results from the Studies Investigating Comorbidities Aggravating Heart Failure (SICA-HF). J Am Med Dir Assoc. 2017; 18(3): 240–45. doi: 10.1016/j.jamda.2016.09.006.


About the Autors


Alina V. Pyatskaya, postgraduate student of the laboratory of fundamental and applied obesity procedures, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia. Address: 101000, Moscow, 10/3 Petroverigskiy Lane. Tel.: +7 (965) 362-15-83. E-mail: skorobogatova.al@gmail.com
Olga N. Dzhioeva, PhD, Senior researcher of the laboratory of fundamental and applied obesity procedures, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia. Address: 101000, Moscow, 10/3 Petroverigskiy Lane.
Oksana M. Drapkina, MD, professor, corresponding member of RAS, Director of National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia. Address: 101000, Moscow, 10/3 Petroverigskiy Lane. Tel: +7 (495) 623-86-36. E-mail: ODrapkina@gnicpm.ru. ORCID: 0000-0002-4453-8430


Бионика Медиа