COVID-19 and cardiovascular diseases: a dangerous tandem


DOI: https://dx.doi.org/10.18565/therapy.2021.5.96-102

Avdeeva I.V., Burko N.V., Makarova Kar.N., Makarova Kr.N., Oleynikov V.E.

Penza State University
Abstract. Nowadays all the world continues to live in the conditions of extension of new coronavirus infection (COVID-19), which the World Health Organization has assigned the status of a pandemic. From the very first cases registered in Wuchang (China), it was evident the high tropism of the virus to the respiratory organs, but soon a tendency towards multi-organ damage was revealed. One of the most common comorbid pathologies in COVID-19 patients is cardiovascular disease. Infection can lead to myocardial damage, various types of acute coronary syndrome, arrhythmias. Taking into account the widespread prevalence of blood circulatory system pathology in the population, the aspects of cardiovascular diseases treatment of COVID-19 infected persons, in particular, by drugs having influence at renin-angiotensin-aldosterone system, and by statins, are of considerable interest now.

Literature



  1. Driggin E., Madhavan M.V., Bikdeli B. et al. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. J Am Coll Cardiol. 2020; 75(18): 2352–71. doi: 10.1016/j.jacc.2020.03.031.

  2. Hendren N.S., Drazner M.H., Bozkurt B. et al. Description and proposed management of the acute COVID19 cardiovascular syndrome. Circulation. 2020; 141(23): 1903–14. doi.org/10.1161/CIRCULATIONAHA.120.047349.

  3. Hendren N.S., Grodin J.L., Drazner M.H. Unique patterns of cardiovascular involvement in COVID-19. J Card Fail. 2020; 26(6): 466–69. doi: 10.1016/j.cardfail.2020.05.006.

  4. ESC European Society of Cardiology. ESC guidance for the diagnosis and management of CV disease during the COVID-19 pandemic. Available at: https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID19-Guidance (date of access – 22.04.2021).

  5. Шляхто Е.В., Конради А.О., Арутюнов Г.П. с соавт. Руководство по диагностике и лечению болезней системы кровообращения в контексте пандемии COVID-19. Российский кардиологический журнал. 2020; 3: 1–20. [Shlyakho E.V., Konradi A.O., Arutyunov G.P. et al. Guidelines for the diagnosis and treatment of circulatory diseases in the context of the COVID-19 pandemic. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2020; 3: 1–20 (In Russ.)]. doi: https://dx.doi.org/10.15829/1560-4071-2020-3-3801.

  6. Jaffe A.S., Cleland J.G.F., Katus H.A. Myocardial injury in severe COVID-19 infection. Eur. Heart J. 2020; 41 (22): 2080–82. doi: 10.1093/eurheartj/ehaa447.

  7. Babapoor-Farrokhran S., Gill D., Walker J. et al. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020; 253: 117723. doi: 10.1016/j.lfs.2020.117723.

  8. Zhang H., Penninger J.M., Li Y. et al. Angiotensinconverting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46(4): 586–90. doi: 10.1007/s00134-020-05985-9.

  9. Guo T., Fan Y., Chen M. et al. Cardiovascular Implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(7): 811–18. doi: 10.1001/jamacardio.2020.1017.

  10. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. doi: 10.1016/S0140-6736(20)30183-5.

  11. Preeti M., Urvish P., Nidhi H.P. et al. Elevated cardiac troponin I as a predictor of outcomes in COVID-19 hospitalizations: a meta-analysis. Infez Med. 2020; 28(4): 500–06.

  12. Sardu C., Gambardella J., Morelli M.B. et al. Hypertension, thrombosis, kidney failure, and diabetes: Is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med. 2020; 9(5): 1417. doi: 10.3390/jcm9051417.

  13. Guzik T., Mohiddin S.A., Dimarco A. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res. 2020; 116(10): 1666–87. doi: 10.1093/cvr/cvaa106.

  14. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061–69. doi: 10.1001/jama.2020.1585.

  15. Барбараш О.Л., Каретникова В.Н., Кашталап В.В. с соавт. Новая коронавирусная болезнь (COVID-19) и сердечно-сосудистые заболевания. Комплексные проблемы сердечно-сосудистых заболеваний. 2020; 2: 17–28. [Barbarash O.L., Karetnikova V.N., Kashtalap V.V. et al. New coronavirus disease (COVID-19) and cardiovascular disease. Kompleksnyye problemy serdechno-sosudistykh zabolevaniy = Complex Issues of Cardiovascular Diseases. 2020; 2: 17–28 (In Russ.)]. doi: https://dx.doi.org/10.17802/2306-1278-2020-9-2-17-28.

  16. Desai A.D., Boursiquot B.C., Melki L. et al. Management of arrhythmias associated with COVID-19. Curr Cardiol Rep. 2020; 23(1): 2. doi: 10.1007/s11886-020-01434-7.

  17. Onder G., Rezza G., Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020; 323(18): 1775–76. doi: 10.1001/jama.2020.4683.

  18. Berman J.P., Abrams M.P., Kushnir A. et al. Cardiac electrophysiology consultative experience at the epicenter of the COVID-19 pandemic in the United States. Indian Pacing Electrophysiol J. 2020; 20(6): 250–56. doi: 10.1016/j.ipej.2020.08.006.

  19. Ambrus D.B., Benjamin E.J., Bajwa E.K. et al. Risk factors and outcomes associated with new-onset atrial fibrillation during acute respiratory distress syndrome. J Crit Care. 2015; 30(5): 994–97. doi: 10.1016/j.jcrc.2015.06.003.

  20. Kochi A.N., Tagliari A.P., Forleo G.B. et al. Cardiac and arrhythmic complications in patients with COVID-19. J Cardiovasc Electrophysiol. 2020; 31(5): 1003-08. doi: 10.1111/jce.14479.

  21. Yang C., Jin Z. An acute respiratory infection runs into the most common noncommunicable epidemic - COVID-19 and cardiovascular diseases. JAMA Cardiol. 2020; 5(7): 743–44. doi: 10.1001/jamacardio.2020.0934.

  22. Holt A, Gislason G.H., Schou M. et al. New-onset atrial fibrillation: incidence, characteristics, and related events following a national COVID-19 lockdown of 5.6 million people. Eur Heart J. 2020; 41(32): 3072–79. doi: 10.1093/eurheartj/ehaa494.

  23. Baldi E., Sechi G.M., Mare C. et al. Out-of-hospital cardiac arrest during the Covid-19 outbreak in Italy. N Engl J Med. 2020; 383(5): 496–98. doi: 10.1056/NEJMc2010418.

  24. Baldi E., Sechi G.M., Mare C. et al. COVID-19 kills at home: the close relationship between the epidemic and the increase of out-of-hospital cardiac arrests. Eur Heart J. 2020; 41(32): 3045–54. doi: 10.1093/eurheartj/ehaa508.

  25. Schwartz P.J., Crotti L., Insolia R. Long-QT syndrome. From genetics to management. Circ Arrhythm Electrophysiol. 2012; 5(4): 868–77. doi: 10.1161/CIRCEP.111.962019.

  26. Бубнова М.Г., Аронов Д.М. COVID-19 и сердечно-сосудистые заболевания: от эпидемиологии до реабилитации. Пульмонология. 2020; 5: 688–699. [Bubnova M.G., Aronov D.M. COVID-19 and сardiovascular diseases: from epidemiology to rehabilitation. Pul’monologiya = Pulmonology. 2020; 5: 688–699 (In Russ.)]. doi: https://dx.doi.org/10.18093/0869-0189-2020-30-5-688-699.

  27. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. 2020; 81(5): 537–40. doi: 10.1002/ddr.21656.

  28. Li M.Y., Li L., Zhang Y. et al. Expression of the SARSCoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020; 9(1): 45. doi: 10.1186/s40249-020-00662-x.

  29. Li B., Yang J., Zhao F. et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109(5): 531–38. doi: 10.1007/s00392-020-01626-9.

  30. Shi S., Qin M., Cai Y. et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J. 2020; 41 (22): 2070–2079. doi: 10.1093/eurheartj/ehaa408.

  31. Kreutz R., Algharably E.A., Azizi M. et al. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: Implications for COVID-19. Cardiovasc Res. 2020; 116(10): 1688–99. doi: 10.1093/cvr/cvaa097.

  32. Драпкина О.М, Палаткина Л.О., Зятенкова Е.В. Плейотропные эффекты статинов. Влияние на жесткость сосудов. Врач. 2012; 9: 5–9. [Drapkina O.M., Paltkina L.O., Zyatenkova E.V. Pleiotropic effects of statins. Influence on stiffness of blood vessels. Vrach = Doctor. 2012; 9: 5–9 (In Russ.)].

  33. Яковенко Е.И., Мамедов М.Н. Влияние метаболических эффектов статинов на клинические проявления атеросклероза. Российский кардиологический журнал. 2012; 2: 85–90. [Yakovenko E.I., Mamedov M.N. Metabolic effects of statins and clinical manifestations of atherosclerosis. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2012; 2: 85–90 (In Russ.)]. doi: https://dx.doi.org/10.15829/1560-4071-2012-2-85-90.

  34. Grifoni E., Valoriani A., Cei F. et al. Interleukin-6 as prognosticator in patients with COVID-19. J Infect. 2020; 81(3): 452–82. doi: 10.1016/j.jinf.2020.06.008.

  35. Loppnow H., Zhang L., Buerke M. et al. Statins potently reduce the cytokine-mediated IL-6 release in SMC/MNC cocultures. J Cell Mol Med. 2011; 15(4): 994–1004. doi: 10.1111/j.1582-4934.2010.01036.x.

  36. Chow R., Im J., Chiu N. et al. The protective association between statins use and adverse outcomes among COVID-19 patients: a systematic review and meta-analysis. British Medical Journal Yele. Available at: https://www.medrxiv.org/content/10.1101/2020.12.18.20248317v1.full-text (date of access – 22.04.2021). doi: 10.1101/2021.02.08.21251070.

  37. Reiner Z., Hatamipour M., Banach M. et al. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch Med Sci. 2020; 16(3): 490–96. doi: 10.5114/aoms.2020.94655.

  38. Daniels L.B., Sitapati A.M., Zhang J. et al. Relation of statin use prior to admission to severity and recovery among COVID-19 inpatients. Am J Cardiol. 2020; 136: 149–55. doi: 10.1016/j.amjcard.2020.09.012.

  39. Hariyanto T.I., Kurniawan A. Statin therapy did not improve the in-hospital outcome of coronavirus disease 2019 (COVID-19) infection. Diabetes Metab Syndr. 2020; 14(6): 1613–15. doi: 10.1016/j.dsx.2020.08.023.


About the Autors


Irina V. Avdeeva, PhD, associate professor of the Department of therapy of the Faculty of general medicine, Penza State University. Address: 440026, Penza, 28/7 Lermontova Str. Tel.: +7 (8412) 59-18-61. E-mail: eliseeva.iv1@gmail.com. ORCID: 0000-0003-4266-5900
Nadezhda V. Burko, PhD, associate professor of the Department of therapy of the Faculty of general medicine, Penza State University. Address: 440026, Penza, 28/7 Lermontova Str. Tel.: +7 (8412) 59-18-61. E-mail: +7 (8412) 59-18-61. E-mail: hopeful.n@mail.ru. ORCID: 0000-0001-8029-4480
Karina N. Makarova, postgraduate student of the Department of therapy of the Faculty of general medicine, Penza State University. Address: 440026, Penza, 28/7 Lermontova Str. Tel.: +7 (8412) 59-18-61. E-mail: makarovakarishka7@rambler.ru. ORCID: 0000-0001-7117-0937
Kristina N. Makarova, postgraduate student of the Department of therapy of the Faculty of general medicine, Penza State University. Address: 440026, Penza, 28/7 Lermontova Str. Tel.: +7 (8412) 59-18-61. E-mail: hristinamack4rova@yandex.ru. ORCID: 0000-0002-4227-4638
Valentin E. Oleynikov, MD, professor, head of the Department of therapy of the Faculty of general medicine, Penza State University. Address: 440026, Penza, 28/7 Lermontova Str. Tel.: +7 (8412) 59-18-61. E-mail: v.oleynikof@gmail.com. ORCID: 0000-0002-7463-9259


Similar Articles


Бионика Медиа