Modern strategy of diagnosis and therapy of patients with obstructive sleep apnea


DOI: https://dx.doi.org/10.18565/therapy.2021.8.144-150

Babak S.L., Budnevsky A.V., Buzunov R.V.

1) A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia; 2) N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia; 3) Central State Medical Academy of the Administrative Department of the President of the Russian Federation, Moscow
Abstract. Obstructive sleep apnea (OSA), as a heterogeneous chronic disease, significantly reduces the quality of life, aggravates the course of comorbidities and increases the mortality of patients from all causes. Choosing an effective therapy for OSA patients will require a comprehensive assessment of therapeutic and minimally invasive surgical interventions. At the same time, the multidisciplinary approach to the treatment of OSA patients involving a variety of clinical strategies, is poorly understood from the standpoint of evidence-based medicine. Most scientific publications on this topic are not randomized controlled trials, which makes it difficult to assess their applicability in real clinical practice. In this article, the authors provide a brief overview of modern effective and justified diagnostic and therapeutic interventions that allow clinician to form a personalized strategy for the diagnosis and treatment of comorbid OSA patients in accordance with the principles of precision medicine.

Literature



  1. Patil S.P., Ayappa I.A., Caples S.M. et al. Treatment of adult obstructive sleep apnea with positive airway pressure: An American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2019; 15(2): 335–43. doi: 10.5664/jcsm.7640.

  2. Jonas D.E., Amick H.R., Feltner C. et al. Screening for obstructive sleep apnea in adults: An evidence review for the U.S. Preventive services task force [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US). 2017 Jan. Report No.: 14-05216-EF-1. PMID: 28211654.

  3. Peppard P.E., Young T., Barnet J.H. et al. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013; 177(9): 1006–14. doi: 10.1093/aje/kws342.

  4. Johnson D.A., Guo N., Rueschman M. et al. Prevalence and correlates of obstructive sleep apnea among African Americans: the Jackson Heart Sleep Study. Sleep. 2018; 41(10): zsy154. doi: 10.1093/sleep/zsy154.

  5. Fietze I., Laharnar N., Obst A. et al. Prevalence and association analysis of obstructive sleep apnea with gender and age differences – results of SHIP-Trend. J Sleep Res. 2019; 28(5): e12770. doi: 10.1111/jsr.12770.

  6. Assallum H., Song T.Y., Aronow W.S., Chandy D. Obstructive sleep apnoea and cardiovascular disease: a literature review. Arch Med Sci. 2019; 17(5): 1200–12. doi: 10.5114/aoms.2019.88558.

  7. Chang H.P., Chen Y.F., Du J.K. Obstructive sleep apnea treatment in adults. Kaohsiung J Med Sci. 2020; 36(1): 7–12. doi: 10.1002/kjm2.12130.

  8. Lo Bue A., Salvaggio A., Insalaco G. Obstructive sleep apnea in developmental age. A narrative review. Eur J Pediatr. 2020; 179(3): 357–65. doi: 10.1007/s00431-019-03557-8.

  9. Kapur V.K., Auckley D.H., Chowdhuri S. et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: An American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2017; 13(3): 479–504. doi: 10.5664/jcsm.6506.

  10. Punjabi N.M. COUNTERPOINT: Is the apnea-hypopnea index the best way to quantify the severity of sleep-disordered breathing? No. Chest. 2016; 149(1): 16–19. doi: 10.1378/chest.14-2261.

  11. Rapoport D.M. POINT: Is the apnea-hypopnea index the best way to quantify the severity of sleep-disordered breathing? Yes. Chest. 2016; 149(1): 14–16. doi: 10.1378/chest.15-1319.

  12. Camporro F.A., Kevorkof G.V., Alvarez D. Sleep-disordered breathing: looking beyond the apnea/hypopnea index. Arch Bronconeumol (Engl Ed). 2019; 55(7): 396–97. doi: 10.1016/j.arbres.2018.12.003.

  13. Yalamanchali S., Farajian V., Hamilton C. et al. Diagnosis of obstructive sleep apnea by peripheral arterial tonometry: meta-analysis. JAMA Otolaryngol Head Neck Surg. 2013; 139(12): 1343–50. doi: 10.1001/jamaoto.2013.5338.

  14. Kasai T., Takata Y., Yoshihisa A. et al. Comparison of the apnea–hypopnea index determined by a peripheral arterial tonometry-based device with that determined by polysomnography – results from a multicenter study. Circ Rep. 2020; 2(11): 674–81. doi: 10.1253/circrep.CR-20-0097.

  15. How WatchPAT® ONE is adjusted for success in the COVID 19. Available at: https://www.itamar-medical.com/articles/how-watchpat-one-is-adjusted-for-success-in-the-covid19-era (date of access – 01.10.2021).

  16. Weaver T.E. Novel Aspects of CPAP treatment and Interventions to Improve CPAP Adherence. J Clin Med. 2019; 8(12): 2220. doi: 10.3390/jcm8122220.

  17. Avellan-Hietanen H., Maasilta P., Bachour A. Restarting CPAP therapy for sleep apnea after a previous failure. Respir Care. 2020; 65(10): 1541–46. doi: 10.4187/respcare.07766.

  18. Ng J.H., Yow M. Oral appliances in the management of obstructive sleep apnea. Sleep Med Clin. 2019; 14(1): 109–18. doi: 10.1016/j.jsmc.2018.10.012.

  19. Araie T., Okuno K., Ono Minagi H., Sakai T. Dental and skeletal changes associated with long-term oral appliance use for obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med Rev. 2018; 41: 161–72. doi: 10.1016/j.smrv.2018.02.006.

  20. Cantarella D., Savio G., Grigolato L. et al. A new methodology for the digital planning of micro-implant-supported maxillary skeletal expansion. Med Devices (Auckl). 2020; 13: 93–106. doi: 10.2147/MDER.S247751.

  21. Tang H., Liu P., Liu X. et al. Skeletal width changes after mini-implant-assisted rapid maxillary expansion (MARME) in young adults. Angle Orthod. 2021; 91(3): 301–06. doi: 10.2319/052920-491.1.

  22. Aurora R.N., Casey K.R., Kristo D. et al. American Academy of Sleep Medicine. Practice parameters for the surgical modifications of the upper airway for obstructive sleep apnea in adults. Sleep. 2010; 33(10): 1408–13. doi: 10.1093/sleep/33.10.1408.

  23. Choi J.H., Cho S.H., Kim S.N. et al. Predicting outcomes after uvulopalatopharyngoplasty for adult obstructive sleep apnea: A meta-analysis. Otolaryngol Head Neck Surg. 2016; 155(6): 904–13. doi: 10.1177/0194599816661481.

  24. Guilleminault C., Simmons F.B., Motta J. et al. Obstructive sleep apnea syndrome and tracheostomy. Long-term follow-up experience. Arch Intern Med. 1981; 141(8) :985–88.

  25. De Vito A., Woodson B.T., Koka V. et al. OSA upper airways surgery: A targeted approach. Medicina (Kaunas). 2021; 57(7): 690. doi: 10.3390/medicina57070690.

  26. Jandali D., Barrera J.E. Recent advances in orthognathic surgery. Curr Opin Otolaryngol Head Neck Surg. 2020; 28(4): 246–50. doi: 10.1097/MOO.0000000000000638.

  27. Hsieh Y.J., Liao Y.F. Effects of maxillomandibular advancement on the upper airway and surrounding structures in patients with obstructive sleep apnoea: A systematic review. Br J Oral Maxillofac Surg. 2013; 51(8): 834–40. doi: 10.1016/j.bjoms.2012.11.010.

  28. Li K.K., Powell N.B., Riley R.W. et al. Overview of phase I surgery for obstructive sleep apnea syndrome. Ear Nose Throat J. 1999; 78(11):836–37, 841–45.

  29. Li K.K., Riley R.W., Powell N.B. et al. Overview of phase II surgery for obstructive sleep apnea syndrome. Ear Nose Throat J. 1999; 78(11): 851, 854–57.

  30. Chen S., Shi S., Xia Y. et al. A prospective study of the surgical outcome of simple uvulopalatopharyngoplasty (UPPP), UPPP combined with genioglossus advancement or tongue base advancement for obstructive sleep apnea hypopnea syndrome patients with multilevel obstruction. Clin Exp Otorhinolaryngol. 2015; 8(2): 136–41. doi: 10.3342/ceo.2015.8.2.136.

  31. Certal V.F., Zaghi S., Riaz M. et al. Hypoglossal nerve stimulation in the treatment of obstructive sleep apnea: A systematic review and meta-analysis. Laryngoscope. 2015; 125(5): 1254–64. doi: 10.1002/lary.25032.

  32. Sarber K.M., Chang K.W., Ishman S.L. et al. Hypoglossal nerve stimulator outcomes for patients outside the U.S. FDA recommendations. Laryngoscope. 2020; 130(4): 866–72. doi: 10.1002/lary.28175.

  33. Eckert D.J. Phenotypic approaches to obstructive sleep apnoea – new pathways for targeted therapy. Sleep Med Rev. 2018; 37: 45–59. doi: 10.1016/j.smrv.2016.12.003.

  34. Zinchuk A., Yaggi H.K. Phenotypic subtypes of OSA: A challenge and opportunity for precision medicine. Chest. 2020; 157(2): 403–20. doi: 10.1016/j.chest.2019.09.002.


About the Autors


Sergey L. Babak, MD, professor of the Department of phthisiology and pulmonology of the Faculty of general medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia. Address: 107150, Moscow, 39/2 Losinoostrovskaya Str. E-mail: sergbabak@mail.ru. ORCID: 0000-0002-6571-1220. Scopus Author ID: 45560913500
Andrey V. Budnevsky, MD, professor, head of the Department of faculty therapy, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia of the Ministry of Healthcare of Russia. Address: 394036, Voronezh, 10 Studencheskaya Str. E-mail: budnev@list.ru. ORCID: orcid.org/0000-0002-1171-2746.
Roman V. Buzunov, MD, professor of the Department of family medicine with courses in clinical laboratory diagnostics, psychiatry and psychotherapy, Central State Medical Academy of the Administrative Department of the President of the Russian Federation, Honored Doctor of the Russian Federation. Address: 121359, Moscow, 19/1А Marshala Timoshenko Str. E-mail: 7633331@mail.ru


Similar Articles


Бионика Медиа