Resolution of the Council of experts on scientific experience exchange of antiplatelet drugs use, including acetylsalicylic acid for prevention of COVID-19 arterial vascular complications in different time periods of the disease


DOI: https://dx.doi.org/10.18565/therapy.2021.9.113-124

EXPERTS:

DRAPKINA O.M., MD, professor, corresponding member of RAS, director of National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia, chief external expert in therapy and general medical practice of the Ministry of Healthcare of Russia (Moscow)
BURYACHKOVSKAYA L.I., doctor of biological sciences, leading researcher, head of the group of thrombus formation mechanisms of the of A.I. Myasnikov Institute of experimental cardiology of National Medical Research Center of Cardiology (Moscow)
VAVILOVA T.V., MD, professor, head of the Department of laboratory medicine and genetics, V.A. Almazov National Medical Research Center of the Ministry of Healthcare of Russia, chief external expert in clinical laboratory diagnostics of the Ministry of Healthcare of Russia (Saint Petersburg)
KARPOV Yu.A., MD, professor, head of the Department of angiology National Medical Research Center of Cardiology of the Ministry of Healthcare of Russia (Moscow)
LOMAKIN N.V., MD, head of the Department of emergency cardiology with a cardiac resuscitation unit, Central Clinical Hospital with a polyclinic of the Administrative Department of the President of the Russian Federation, chief external expert – cardiologist of the Administrative Department of the President of the Russian Federation (Moscow)
MARTYNOV A.I., MD., professor, academician of RAS, head of the Department of internal diseases No. 1 of the faculty of general medicine with the course of echocardiography, A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia, president of Russian Scientific Medical Society of Internal Medicine (Moscow)
ROITMAN E.V., doctor of biological sciences, professor of the Department of oncology, hematology and radiation therapy, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, president of the National Association of Specialists in Thrombosis, Clinical Hemostasiology and Hemorheology (Moscow)
SYCHEV D.A., MD, professor, professor of RAS, corresponding member of RAS, rector of Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia (Moscow)

Literature



  1. Статистика коронавируса в мире. Доступ: https://gogov.ru/covid-19/world (дата обращения – 01.11.2021). [Coronavirus statistics in the world. Available at: https://gogov.ru/covid-19/world (date of access – 01.11.2021)] (In Russ.)].

  2. Coronavirus pandemic (COVID-19) – the data – statistics and research. Our World in Data. Available at: https://ourworldindata.org/coronavirus-data (date of access – 01.11.2021).

  3. COVID-19 rapid guideline: Managing the long-term effects of COVID-19. Available at: https://www.nice.org.uk/guidance/ng188 (date of access – 01.11.2021).

  4. Venkatesan P. NICE guideline on long COVID. Lancet Respir Med. 2021; 9(2): 129. doi: 10.1016/S2213-2600(21)00031-X.

  5. COVID-19 rapid guideline: Managing the long-term effects of COVID-19. Available at: https://www.nice.org.uk/guidance/ng188/chapter/context#post-covid-19-syndrome (date of access – 01.11.2021).

  6. Moonla C., Sosothikul D., Chiasakul T. et al. Anticoagulation and in-hospital mortality from Coronavirus Disease 2019: A systematic review and meta-analysis. Clin Appl Thromb Hemost. 2021; 27: 10760296211009000. doi: 10.1177/10760296211008999.

  7. Silva Andrade B., Siqueira S., de Assis Soares W.R. et al. Long-COVID and post-COVID health complications: An up-to-date review on clinical conditions and their possible molecular mechanisms. Viruses. 2021; 13(4): 700. doi: 10.3390/v13040700.

  8. Ayoubkhani D., Khunti K., Nafilyan V. et al. Post-covid syndrome in individuals admitted to hospital with COVID-19: retrospective cohort study. BMJ. 2021; 372: n693. doi: 10.1136/bmj.n693.

  9. Katsoularis I., Fonseca-Rodriguez O., Farrington P. et al. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: A self-controlled case series and matched cohort study. Lancet. 2021; 398(10300): 599–607. doi: 10.1016/S0140-6736(21)00896-5.

  10. Salisbury R., Iotchkova V., Jaafar S. et al. Incidence of symptomatic, image-confirmed venous thromboembolism following hospitalization for COVID-19 with 90-day follow-up. Blood Adv. 2020; 4(24): 6230–39. doi: 10.1182/bloodadvances.2020003349.

  11. Patell R., Bogue T., Koshy A. et al. Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood. 2020; 136(11): 1342–46. doi: 10.1182/blood.2020007938.

  12. Cenko E., Badimon L., Bugiardini R. et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res. 2021 Sep 16:cvab298. doi: 10.1093/cvr/cvab298. Online ahead of print.

  13. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 13 (14.10.2021). Минздрав России. Доступ: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/211/original/BMP-13.pdf (дата обращения – 01.11.2021). [Temporary guidelines «Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)». Version 13 (10/14/2021). Ministry of Healthcare of Russia. Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/211/original/BMP-13.pdf (date of access – 01.11.2021) (In Russ.)].

  14. Smilowitz N.R., Subashchandran V., Yuriditsky E. et al. Thrombosis in hospitalized patients with viral respiratory infections versus COVID-19. Am Heart J. 2021; 231: 93–95. doi: 10.1016/j.ahj.2020.10.075.

  15. Modin D., Claggett B., Sindet-Pedersen C. et al. Acute COVID-19 and the incidence of ischemic stroke and acute myocardial infarction. Circulation. 2020; 142(21): 2080–82. doi: 10.1161/CIRCULATIONAHA.120.050809.

  16. Bilaloglu S., Aphinyanaphongs Y., Jones S. et al. Thrombosis in hospitalized patients with COVID-19 in a New York City Health System. JAMA. 2020; 324(8): 799–801. doi: 10.1001/jama.2020.13372.

  17. Dweck M.R., Bularga A., Hahn R.T. et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging. 2020; 21(9): 949–58. doi: 10.1093/ehjci/jeaa178.

  18. Richter D., Guasti L., Koehler F. et al. Late phase of COVID-19 pandemic in general cardiology. A position paper of the ESC Council for Cardiology Practice. ESC Heart Fail. 2021; 8(5): 3483–94. doi: 10.1002/ehf2.13466.

  19. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. doi: 10.1016/S0140-6736(20)30183-5.

  20. Gabbai-Armelin P.R., de Oliveira A.B., Ferrisse T.M. et al. COVID-19 (SARS-CoV-2) infection and thrombotic conditions: A systematic review and meta-analysis. Eur J Clin Invest. 2021; 51(6): e13559. doi: 10.1111/eci.13559.

  21. Yang J., Zheng Y., Gou X. et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int J Infect Dis. 2020; 94: 91–95. doi: 10.1016/j.ijid.2020.03.017.

  22. Chen T., Wu D., Chen H. et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020; 368: m1091. doi: 10.1136/bmj.m1091.

  23. Mendy A., Apewokin S., Wells A.A., Morrow A.L. Factors associated with hospitalization and disease severity in a racially and ethnically diverse population of COVID-19 patients. medRxiv. 2020. doi: 10.1101/2020.06.25.20137323.

  24. Grasselli G., Greco M., Zanella A. et al. Risk factors associated with mortality among patients with COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern Med. 2020; 180(10): 1345–55. doi: 10.1001/jamainternmed.2020.3539.

  25. Guo T., Fan Y., Chen M. et al. Cardiovascular implications of fatal outcomes of patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(7): 811–18. doi: 10.1001/jamacardio.2020.1017.

  26. Kwong J.C., Schwartz K.L., Campitelli M.A. et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med. 2018; 378(4): 345–53. doi: 10.1056/NEJMoa1702090.

  27. Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet. 2021; 397(10270): 220–32. doi: 10.1016/S0140-6736(20)32656-8.

  28. Qin Y., Wu J., Chen T. et al. Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J Clin Invest. 2021; 131(8): e147329. doi: 10.1172/JCI147329.

  29. The European Society for Cardiology. ESC guidance for the diagnosis and management of CV disease during the COVID-19 pandemic. Available at: https://www.escardio.org/Education/COVID-19-and-Cardiology/ESCCOVID-19-Guidance (date of access – 01.11.2021).

  30. Tanislav C., Jacob L., Kostev K. Consultations decline for stroke, transient ischemic attack, and myocardial infarction during the COVID-19 pandemic in Germany. 2021; 1–8. doi: 10.1159/000513812. Online ahead of print.

  31. Mafham M.M., Spata E., Goldacre R. et al. COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England. Lancet. 2020; 396(10248): 381–89. doi: 10.1016/S0140-6736(20)31356-8.

  32. Aldujeli A., Hamadeh A., Briedis K. et al. Delays in presentation in patients with acute myocardial infarction during the COVID-19 pandemic. Cardiol Res. 2020; 11(6): 386–91. doi: 10.14740/cr1175.

  33. Jain N., Berkenbush M., Feldman D.C. et al. Effect of COVID19 on prehospital pronouncements and ED visits for stroke and myocardial infarction. Am J Emerg Med. 2021; 43: 46–49. doi: 10.1016/j.ajem.2021.01.024.

  34. Jain V., Gupta K., Bhatia K. et al. Management of STEMI during the COVID-19 pandemic: Lessons learned in 2020 to prepare for 2021. Trends Cardiovasc Med. 2021; 31(3): 135–40. doi: 10.1016/j.tcm.2020.12.003.

  35. Olie V., Carcaillon-Bentata L., Thiam M.-M. et al. Emergency department admissions for myocardial infarction and stroke in France during the first wave of the COVID-19 pandemic: National temporal trends and regional disparities. Arch Cardiovasc Dis. 2021; 114(5): 371–80. doi: 10.1016/j.acvd.2021.01.006.

  36. Andersen J., Strandberg-Larsen K., Gerds T. et al. Risk of major cardiovascular events according to educational level before and after the initial COVID-19 public lockdown: a nationwide study. J Epidemiol Community Health. 2021; 75(9): 829–35. doi: 10.1136/jech-2020-215133.

  37. Kuitunen I., Ponkilainen V.T., Launonen A.P. et al. The effect of national lockdown due to COVID-19 on emergency department visits. Scand J Trauma Resusc Emerg Med. 2020; 28(1): 114. doi: 10.1186/s13049-020-00810-0.

  38. Wang Y., Zhong M., Wang Z. et al. The preventive effect of antiplatelet therapy in acute respiratory distress syndrome: A meta-analysis. Critical Care. 2018; 22(1): 60. doi: 10.1186/s13054-018-1988-y.

  39. Storey R.F., James S.K., Siegbahn A. et al. Lower mortality following pulmonary adverse events and sepsis with ticagrelor compared to clopidogrel in the PLATO study. Platelets. 2014; 25(7): 517–25. doi: 10.3109/09537104.2013.842965.

  40. Diaz T., Trachtenberg B.H., Abraham S.J.K. et al. Aspirin bioactivity for prevention of cardiovascular injury in COVID-19. Front Cardiovasc Med. 2020; 7: 562708. doi: 10.3389/fcvm.2020.562708.

  41. Mohamed-Hussein A., Aly K., Ibrahim M.-E. Should aspirin be used for prophylaxis of COVID-19 induced coagulopathy? Med Hypotheses. 2020; 144: 109975. doi: 10.1016/j.mehy.2020.109975.

  42. Bianconi V., Violi F., Fallarino F. et al. Is Acetylsalicylic acid a safe and potentially useful choice for adult patients with COVID-19? Drugs. 2020; 80(14): 1383–96. doi: 10.1007/s40265-020-01365-1.

  43. Siegel A.J. Aspirin use for primary cardiovascular prevention during the COVID-19 pandemic. Am J Med. 2021; 134(4): e299. doi: 10.1016/j.amjmed.2020.11.008.

  44. Law S., Leung A.W., Chuanshan X. The arguments of aspirin for COVID-19 complications. Microbes Infect Dis. 2021; 2(1): 7–8. doi: 10.21608/mid.2020.55406.1102.

  45. Godino C., Scotti A., Maugeri N. et al. Antithrombotic therapy in patients with COVID-19? – Rationale and Evidence. Int J Cardiol. 2021; 324: 261–66. doi: 10.1016/j.ijcard.2020.09.064.

  46. Sayed Ahmed H.A., Merrell E., Ismail M. et al. Rationales and uncertainties for aspirin use in COVID-19: A narrative review. Fam Med Community Health. 2021; 9(2): e000741. doi: 10.1136/fmch-2020-000741.

  47. 49. Протокол лечения COVID-19 медицинского центра МГУ. Доступ: http://mc.msu.ru/m/protokol-mnoc.pdf (дата обращения – 01.11.2021). [COVID-19 treatment protocol of the Moscow State University medical center. Available at: http://mc.msu.ru/m/protokol-mnoc.pdf (date of access – 01.11.2021) (In Russ.)].

  48. Canzano P., Brambilla M., Porro B. et al. Platelet and endothelial activation as potential mechanisms behind the thrombotic complications of COVID-19 patients. JACC Basic Transl Sci. 2021; 6(3): 202–18. doi: 10.1016/j.jacbts.2020.12.009.

  49. Terlecki M., Wojciechowska W., Klocek M. et al. Association between cardiovascular disease, cardiovascular drug therapy, and in-hospital outcomes in patients with COVID-19: data from a large single-center registry in Poland. Kardiol Pol. 2021; 79(7–8): 773–80. doi: 10.33963/KP.15990.

  50. Aghajani M.H., Moradi O., Amini H. et al. Decreased in-hospital mortality associated with aspirin administration in hospitalized patients due to severe COVID-19. J Med Virol. 2021; 93(9): 5390–95. doi: 10.1002/jmv.27053.

  51. Chow J.H., Khanna A.K., Kethireddy S. et al. Aspirin use is associated with decreased mechanical ventilation, intensive care unit admission, and in-hospital mortality in hospitalized patients with Coronavirus Disease 2019. Anesth Analg. 2021; 132(4): 930–41. doi: 10.1213/ANE.0000000000005292.

  52. Meizlish M.L., Goshua G., Liu Y. et al. Intermediate-dose anticoagulation, aspirin, and in-hospital mortality in COVID-19: A propensity score-matched analysis. Am J Hematol. 2021; 96(4): 471–79. doi: 10.1002/ajh.26102.

  53. Osborne T.F., Veigulis Z.P., Arreola D.M. et al. Association of mortality and aspirin prescription for COVID-19 patients at the Veterans Health Administration. PLOS ONE. 2021; 16(2): e0246825. doi: 10.1371/journal.pone.0246825.

  54. Group R.C., Horby P.W., Pessoa-Amorim G. et al. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. medRxiv. 2021. doi: 10.1101/2021.06.08.21258132.

  55. Yuan S., Chen P., Li H. et al. Mortality and pre-hospitalization use of low-dose aspirin in COVID-19 patients with coronary artery disease. J Cell Mol Med. 2021; 25(2): 1263–73. doi: 10.1111/jcmm.16198.

  56. Martha J.W., Pranata R., Lim M.A. et al. Active prescription of low-dose aspirin during or prior to hospitalization and mortality in COVID-19: A systematic review and meta-analysis of adjusted effect estimates. Int J Infect Dis. 2021; 108: 6–12. doi: 10.1016/j.ijid.2021.05.016.

  57. Drew D.A., Guo C.-G., Lee K.A. et al. Aspirin and NSAID use and the risk of COVID-19. medRxiv. 2021. doi: 10.1101/2021.04.28.21256261.

  58. Merzon E., Green I., Vinker S. et al. The use of aspirin for primary prevention of cardiovascular disease is associated with a lower likelihood of COVID-19 infection. FEBS J. 2021; 288(17): 5179–89. doi: 10.1111/febs.15784.

  59. Alegbeleye B.J., Akpoveso O.-O.P., Alegbeleye A.J. et al. The novel aspirin as breakthrough drug for COVID-19: A narrative review. Iberoam J Med. 2020; 2(4): 335–50.

  60. Buryachkovskaya L., Lomakin N., Melkumyants A. et al. Tocilizumab, blood cells, and mild COVID-19: delayed vascular protection by interleukin blockade? Eur Heart J Cardiovasc Pharmacother. 2021; 7(5): e81–e82. doi: 10.1093/ehjcvp/pvab051.

  61. Burgueno J.F., Reich A., Hazime H. et al. Expression of SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in the gut of patients with IBD. Inflamm Bowel Dis. 2020; 26(6): 797–808. doi: 10.1093/ibd/izaa085.

  62. Song M., Li Z.L., Zhou Y.J. et al. Gastrointestinal involvement of COVID-19 and potential faecal transmission of SARS-CoV-2. J Zhejiang Univ Sci B. 2020; 21(9): 749–51. doi: 10.1631/jzus.B2000253.

  63. Шляхто Е. В., Конради А. О., Арутюнов Г. П. с соавт. Руководство по диагностике и лечению болезней системы кровообращения в контексте пандемии COVID-19. Российский кардиологический журнал. 2020; 3: 3801. [Shlyakho E.V., Konradi A.O., Arutyunov G.P. et al. Guidelines for the diagnosis and treatment of circulatory diseases in the context of the COVID-19 pandemic. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2020; 3: 3801 (In Russ.)]. https://doi.org/10.15829/1560-4071-2020-3-3801.

  64. COVID-19 treatment guidelines panel. Coronavirus Disease 2019 (COVID-19) treatment guidelines. National Institutes of Health. Available at: https://www.covid19treatmentguidelines.nih.gov (date of access – 01.11.2021).

  65. Клинические рекомендации. Стабильная ишемическая болезнь сердца. Общероссийская общественная организация «Российское кардиологическое общество», автономная некоммерческая организация «Национальное общество по изучению атеросклероза», некоммерческое партнерство «Национальное общество по атеротромбозу», Ассоциация сердечно-сосудистых хирургов России. 2020. Рубрикатор клинических рекомендаций Минздрава России. Доступ: https://cr.minzdrav.gov.ru/schema/155_1 (дата обращения – 01.11.2021). [Clinical guidelines. Stable ischemic heart disease. Russian Cardiological Society, National Society for the Study of Atherosclerosis, National Society for Atherothrombosis, Association of Cardiovascular Surgeons of Russia. 2020. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. Available at: https://cr.minzdrav.gov.ru/schema/155_1 (date of access – 01.11.2021) (In Russ.)].

  66. Клинические рекомендации. Острый коронарный синдром без подъема сегмента ST электрокардиограммы. Ассоциация сердечно-сосудистых хирургов России, Общероссийская общественная организация «Российское кардиологическое общество». 2020. Рубрикатор клинических рекомендаций Минздрава России. Доступ: https://cr.minzdrav.gov.ru/schema/154_3 (дата обращения – 01.11.2021). [Clinical guidelines. Acute coronary syndrome without ST segment elevation electrocardiogram. Association of Cardiovascular Surgeons of Russia, Russian Cardiological Society. 2020. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. Available at: https://cr.minzdrav.gov.ru/schema/154_3 (date of access – 01.11.2021) (In Russ.)].

  67. Клинические рекомендации. Острый инфаркт миокарда с подъемом сегмента ST электрокардиограммы. Общероссийская общественная организация «Российское кардиологическое общество», Ассоциация сердечно-сосудистых хирургов России. 2020. Рубрикатор клинических рекомендаций Минздрава России. Доступ: https://cr.minzdrav.gov.ru/schema/157_4 (дата обращения – 01.11.2021). [Clinical guidelines. Acute myocardial infarction with ST segment elevation of the electrocardiogram. Russian Cardiological Society, Association of Cardiovascular Surgeons of Russia. 2020. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. Available at: https://cr.minzdrav.gov.ru/schema/157_4 (date of access – 01.11.2021) (In Russ.)].

  68. Steg P.G., Huber K., Andreotti F. et al. Bleeding in acute coronary syndromes and percutaneous coronary interventions: position paper by the Working Group on Thrombosis of the European Society of Cardiology. Eur Heart J. 2011; 32(15): 1854–64. doi: 10.1093/eurheartj/ehr204.

  69. Rajan S., Khunti K., Alwan N. et al. In the wake of the pandemic: Preparing for long COVID [Internet]. Copenhagen (Denmark): European Observatory on Health Systems and Policies; 2021. European Observatory Policy Briefs.

  70. Sabatino J., De Rosa S., Di Salvo G., Indolfi C. Impact of cardiovascular risk profile on COVID-19 outcome. A meta-analysis. PLoS ONE. 2020; 15(8): e0237131. doi: 10.1371/journal.pone.0237131.

  71. Visseren F.L.J., Mach F., Smulders Y.M. et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2021; 42(34): 3227–37. doi: 10.1093/eurheartj/ehab484.

  72. Arnett D.K., Blumenthal R.S., Albert M.A. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2019; 74(10): e177–e232, doi: 10.1016/j.jacc.2019.03.010.


About the Autors


Nikita V. Lomakin, MD, head of the Department of emergent cardiology with a cardiac resuscitation unit, Central Clinical Hospital with a polyclinic of the Administrative Department of the President of the Russian Federation, chief external expert-cardiologist of the Administrative Department of the President of the Russian Federation (Moscow). Address: 121359, Moscow, 15 Marshala Timoshenko Str. E-mail: lomakinnikita@gmail.com


Similar Articles


Бионика Медиа