DOI: https://dx.doi.org/10.18565/therapy.2022.3.134-143
Bolieva L.Z., Malyavin A.G., Aidarova N.K., Byazrova S.S.
1) North Ossetian State Medical Academy of the Ministry of Healthcare of Russia, Vladikavkaz; 2) A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia
1. Paediatric Intensive Care Society. PICS statement: Increased number of reported cases of novel presentation of multisystem inflammatory disease. 27 April 2020. URL: https://pccsociety.uk/wp-content/uploads/2020/04/PICS-statement-re-novel-KD-C19-presentation-v2-27042020.pdf (date of access – 11.03.2022). 2. Royal College of Paediatrics and Child Health. Guidance – paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS). 2020. URL: https://www.rcpch.ac.uk/resources/guidance paediatric-multisystem-inflammatory-syndrome-temporally-associated covid-19-pims (date of access – 11.03.2022). 3. Verdoni L., Mazza A., Gervasoni A. et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: An observational cohort study. Lancet. 2020; 395(10239): 1771–78. https://dx.doi.org/10.1016/S0140-6736(20)31103-X. 4. Hennon T.R., Yu K.O.A., Penque M.D. et al. COVID-19 associated multisystem inflammatory syndrome in children (MIS-C) guidelines; revisiting the Western New York approach as the pandemic evolves. Prog Pediatr Cardiol. 2021; 62: 101407. https://dx.doi.org/10.1016/j.ppedcard.2021.101407. 5. Riphagen S., Gomez X., Gonzalez-Martinez C. et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020; 395(10237): 1607–8. https://dx.doi.org/10.1016/S0140-6736(20)31094-1. 6. World Health Organization. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19. May 15, 2020. URL: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (date of access – 11.03.2022). 7. Morris S.B., Schwartz N.G., Patel P. et al. Case series of multisystem inflammatory syndrome in adults associated with SARS-CoV-2 infection – United Kingdom and United States, March–August 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(40): 1450–56. https://dx.doi.org/10.15585/mmwr.mm6940e1. 8. Belay E.D., Abrams J., Oster M.E. et al. Trends in geographic and temporal distribution of US children with multisystem inflammatory syndrome during the COVID-19 pandemic. JAMA Pediatr. 2021; 175(8): 837–45. https://dx.doi.org/10.1001/jamapediatrics.2021.0630 9. Multisystem inflammatory syndrome in adults (MIS-A) case definition information for healthcare providers. Centers for Disease Control and Prevention. URL: https://www.cdc.gov/mis/mis-a/hcp.html (date of access – 11.03.2022). 10. Patel P., DeCuir J., Abrams J. et al. Clinical characteristics of multisystem inflammatory syndrome in adults. A systematic review. JAMA Netw Open. 2021; 4(9): e2126456. https://dx.doi.org/10.1001/jamanetworkopen.2021.26456. 11. Vogel T.P., Top K.A., Karatzios C. et al. Multisystem inflammatory syndrome in children and adults (MIS-C/A): Case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine. 2021; 39(22): 3037–49. https://dx.doi.org/10.1016/j.vaccine.2021.01.054. 12. Stratton C.W., Tang Y.W., Lu H. Pathogenesis-directed therapy of 2019 novel coronavirus disease. J Med Virol. 2021; 93(3): 1320–42. https://dx.doi.org/10.1002/jmv.26610. 13. Nazy I., Jevtic S.D., Moore J.C. et al. Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. J Thromb Haemost. 2021; 19(5): 1342–47. https://dx.doi.org/10.1111/jth.15283. 14. Brodard J., Kremer H.J.A., Fontanam P. et al. COVID-19 patients often show high-titer non-platelet-activating anti-PF4/heparin IgG antibodies. J Thromb Haemost. 2021; 19(5): 1294–98. https://dx.doi.org/10.1111/jth.15262. 15. Kumar M.A., Krishnaswamy M., Arul J.N. Post COVID-19 sequelae: Venous thromboembolism complicated by lower GI bleed. BMJ Case Rep. 2021; 14(1): e241059. https://dx.doi.org/10.1136/bcr-2020-241059. 16. Townsend L., Fogarty H., Dyer A. et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J Thromb Haemost. 2021; 19(4): 1064–70. https://dx.doi.org/10.1111/jth.15267. 17. Weatherhead J.E., Clark E., Vogel T.P. et al. Inflammatory syndromes associated with SARS-CoV-2 infection: dysregulation of the immune response across the age spectrum. J Clin Invest. 2020; 130(12): 6194–97. https://dx.doi.org/10.1172/JCI145301. 18. Weisberg S.P., Connors T.J., Zhu Y. et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat Immunol. 2021; 22(1): 25–31. https://dx.doi.org/10.1038/s41590-020-00826-9. 19. Webb B.J., Peltan I.D., Jensen P. et al. Clinical criteria for COVID-19-associated hyperinflammatory syndrome: A cohort study. Lancet Rheumatol. 2020; 2(12): 754–63. https://dx.doi.org/10.1016/S2665-9913(20)30343-X. 20. Tahaghoghi-Hajghorbani S., Zafari P., Masoumi E. et al. The role of dysregulated immune responses in COVID-19 pathogenesis. Virus Res. 2020; 290: 198197. https://dx.doi.org/10.1016/j.virusres.2020.198197. 21. Kuri-Cervantes L., Pampena M.B., Meng W. et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol. 2020; 5(49): eabd7114. https://dx.doi.org/10.1126/sciimmunol.abd7114. 22. Zhao J., Yuan Q., Wanget H. et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. 2020; 71(16): 2027–34. https://dx.doi.org/10.1093/cid/ciaa344. 23. Zhou Y., Fu B., Zheng X. et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020; 7(6): 998–1002. https://dx.doi.org/10.1093/nsr/nwaa041. 24. Guo C., Fu B., Zheng X. et al. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm. Nat Commun. 2020; 11(1): 3924. https://dx.doi.org/10.1038/s41467-020-17834-w. 25. Maucourant C., Filipovic I., Ponzetta A. et al. Natural killer cell immunotypes related to COVID-19 disease severity. Sci Immunol. 2020; 5(50): eabd6832. https://dx.doi.org/10.1126/sciimmunol.abd6832. 26. Garvin M.R., Alvarez C., Miller J.I. et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife. 2020; 9: e59177. https://dx.doi.org/10.7554/eLife.59177. 27. Vabret N., Britton G.J., Gruber C. et al. Immunology of COVID-19: current state of the science. Immunity 2020; 52(6): 910–41. https://dx.doi.org/10.1016/j.immuni.2020.05.002. 28. Woodruff M., Ramonell R.P., Cashman K.S. et al. Critically ill SARS-CoV-2 patients display lupus-like hallmarks of extrafollicular B cell activation. medRxiv 2020. https://dx.doi.org/10.1101/2020.04.29.20083717. 29. Chen G., Wu D., Guo W. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5): 2620–29. https://dx.doi.org/10.1172/JCI137244. 30. Gruber C.N., Patel R.S., Trachtman R. et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell. 2020; 183(4): 982–95.e14. https://dx.doi.org/10.1016/j.cell.2020.09.034. 31. Zhou Y., Fu B., Zheng X. et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020; 7(6): 998–1002. https://dx.doi.org/10.1093/nsr/nwaa041. 32. Зайратьянц О.В., Cамсонова М.В., Михалева Л.М. с соавт. Патологическая анатомия COVID-19: Атлас. Под общ. ред. О.В. Зайратьянца. Москва; ГБУ «НИИОЗММ ДЗМ». 2020; 140 с. [Zairatyants O.V., Samsonova M.V., Mikhaleva L.M. et al. The Pathological Anatomy of COVID-19: Atlas. General ed. by Zairatyants O.V. Moscow: Research Institute of Health Organization and medical management of the Moscow Healthcare Department. 2020; 140 pp. (In Russ.)]. 33. Diorio C., Henrickson S.E., Vella L.A. et al. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J Clin Invest. 2020; 130(11): 5967–75. https://dx.doi.org/10.1172/JCI140970. 34. Othenin-Girard A., Regamey J., Lamoth F. et al. Multisystem inflammatory syndrome with refractory cardiogenic shock due to acute myocarditis and mononeuritis multiplex after SARS-CoV-2 infection in an adult. Swiss Med Wkly. 2020; 150: w20387. https://dx.doi.org/10.4414/smw.2020.20387. 35. Godfred-Cato S. COVID-19-associated multisystem inflammatory syndrome in children – United States, March–July 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(32): 1074–80. https://dx.doi.org/10.15585/mmwr.mm6932e2. 36. Belhadjer Z. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation. 2020; 142(5): 429–36. https://dx.doi.org/10.1161/CIRCULATIONAHA.120.048360. 37. Feldstein L.R., Rose E.B., Horwitz S.M. et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020; 383(4): 334–46. https://dx.doi.org/10.1056/NEJMoa2021680. 38. Dufort E.M., Koumans E.H., Chow E.J. et al. Multisystem inflammatory syndrome in children in New York State. N Engl J Med. 2020; 383(4): 347–58. https://dx.doi.org/10.1056/NEJMoa2021756. 39. Davies P., Evans C., Kanthimathinathan H.K. et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: A multicentre observational study. Lancet Child Adolesc Health. 2020; 4(9): 669–77. https://dx.doi.org/10.1016/S2352-4642(20)30215-7. 40. Rowley A.H., Shulman S.T., Arditi M. Immune pathogenesis of COVID-19–related multisystem inflammatory syndrome in children. J Clin Investig. 2020; 130(11): 5619–21. https://dx.doi.org/10.1172/JCI143840. 41. Whittaker E., Bamford A., Kenny J. et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA. 2020; 324(3): 259–69. https://dx.doi.org/10.1001/jama.2020.10369. 42. Niaz T., Hope K., Fremed M. et al. Role of a pediatric cardiologist in the COVID-19 pandemic. Pediatr Cardiol. 2021; 42(1): 19–35. https://dx.doi.org/10.1007/s00246-020-02476-y. 43. Chau V.Q., Giustino G., Mahmood K. et al. Cardiogenic shock and hyperinflammatory syndrome in young males with COVID-19. Circ Heart Fail. 2020; 13(10): e007485. https://dx.doi.org/10.1161/CIRCHEARTFAILURE.120.007485. 44. McCrindle B.W., Rowley A.H., Newburger J.W. et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the American Heart Association. Circulation. 2017; 135(17): 927–99. https://dx.doi.org/10.1161/CIR.0000000000000484. 45. Moraleda C., Serna-Pascual M., Soriano-Arandes A. et al. Multi-inflammatory syndrome in children related to SARS-CoV-2 in Spain. Clin Infect Dis. 2021; 72(9): 397–401. https://dx.doi.org/10.1093/cid/ciaa1042. 46. Lee P.Y. Distinct clinical and immunological features of SARS-CoV-2-induced multisystem inflammatory syndrome in children. J Clin Invest. 2020; 130(11): 5942–50. https://dx.doi.org/10.1172/JCI141113. 47. Mucocutaneous symptom complexes. In: Long S., Pickering L., Prober C. (editors.) Principles and practice of pediatric infectious diseases. Edinburgh; New York: Elsevier. 2012. ISBN: 978-1-4377-2702-9. 48. Jain S., Sen S., Lakshmivenkateshiah S. et al. Multisystem inflammatory syndrome in children with COVID-19 in Mumbai, India. Indian Pediatr. 2020; 57(11): 1015–19. https://dx.doi.org/10.1007/s13312-020-2026-0. 49. Hechemy K.E. Oteo J.A., Raoult D. et al. A century of rickettsiology: Emerging, reemerging rickettsioses, clinical, epidemiologic, and molecular diagnostic aspects and emerging veterinary rickettsioses: An overview. Ann NY Acad Sci. 2006; 1078: 1–14. https://dx.doi.org/10.1196/annals.1374.001. 50. Duchin J.S., Koster F.T., Peters C.J. et al. Hantavirus pulmonary syndrome: A clinical description of 17 patients with a newly recognized disease. The Hantavirus Study Group. N Engl J Med. 1994; 330(14): 949–55. https://dx.doi.org/10.1056/NEJM199404073301401. 51. Marsh R.A. Epstein–Barr virus and hemophagocytic lymphohistiocytosis. Front Immunol. 2017; 8: 1902. https://dx.doi.org/10.3389/fimmu.2017.01902. 52. Schultz J.C., Hilliard A.A., Cooper L.T. Jr, Rihal C.S. Diagnosis and treatment of viral myocarditis. Mayo Clin Proc. 2009; 84(11): 1001–9. https://dx.doi.org/10.1016/S0025-6196(11)60670-8. 53. Hsu D.Y., Brieva J., Silverberg N.B. et al. Pediatric Stevens–Johnson syndrome and toxic epidermal necrolysis in the United States. J Am Acad Dermatol. 2017; 76(5): 811–17.e4. https://dx.doi.org/10.1016/j.jaad.2016.12.024. 54. Cacoub P., Musette P., Descamps V. et al. The DRESS syndrome: A literature review. Am J Med. 2011; 124(7): 588–97. https://dx.doi.org/10.1016/j.amjmed.2011.01.017.
Laura Z. Bolieva, Dr. med.habil., professor, head of the Department of pharmacology with clinical pharmacology, North Ossetian State Medical Academy of the Ministry of Healthcare of Russia. Address: 362019, Vladikavkaz, 40 Pushkinskaya Str. E-mail: bolievalz@mail.ru. ORCID: https://orcid.org/0000-0002-3763-8994
Andrey G. Malyavin, Dr. med.habil., professor, professor of the Department of phthisiology and pulmonology of the Faculty of general medicine, A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia. Address: 107150, Moscow, 39/2 Losinoostrovskaya Str. E-mail: maliavin@mail.ru.
ORCID: https://orcid.org/0000-0002-6128-5914.
Nina K. Aidarova, student of .I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia. Address: 107150, Moscow, 39/2 Losinoostrovskaya Str. E-mail: victoriabiragova@gmail.com.
Svetlana S. Byazrova, PhD, associate professor of the Department of pharmacology with clinical pharmacology, North Ossetian State Medical Academy of the Ministry of Healthcare of Russia. Address: 362019, Vladikavkaz, 40 Pushkinskaya Str. E-mail: svetapharm@yandex.ru