DOI: https://dx.doi.org/10.18565/therapy.2022.3.134-143
Л.З. Болиева, А.Г. Малявин, Н.К. Айдарова, С.С. Бязрова
1) ФГБОУ ВО «Северо-Осетинская государственная медицинская академия» Минздрава России, г. Владикавказ; 2) ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
1. Paediatric Intensive Care Society. PICS statement: Increased number of reported cases of novel presentation of multisystem inflammatory disease. 27 April 2020. URL: https://pccsociety.uk/wp-content/uploads/2020/04/PICS-statement-re-novel-KD-C19-presentation-v2-27042020.pdf (date of access – 11.03.2022). 2. Royal College of Paediatrics and Child Health. Guidance – paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS). 2020. URL: https://www.rcpch.ac.uk/resources/guidance paediatric-multisystem-inflammatory-syndrome-temporally-associated covid-19-pims (date of access – 11.03.2022). 3. Verdoni L., Mazza A., Gervasoni A. et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: An observational cohort study. Lancet. 2020; 395(10239): 1771–78. https://dx.doi.org/10.1016/S0140-6736(20)31103-X. 4. Hennon T.R., Yu K.O.A., Penque M.D. et al. COVID-19 associated multisystem inflammatory syndrome in children (MIS-C) guidelines; revisiting the Western New York approach as the pandemic evolves. Prog Pediatr Cardiol. 2021; 62: 101407. https://dx.doi.org/10.1016/j.ppedcard.2021.101407. 5. Riphagen S., Gomez X., Gonzalez-Martinez C. et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020; 395(10237): 1607–8. https://dx.doi.org/10.1016/S0140-6736(20)31094-1. 6. World Health Organization. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19. May 15, 2020. URL: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (date of access – 11.03.2022). 7. Morris S.B., Schwartz N.G., Patel P. et al. Case series of multisystem inflammatory syndrome in adults associated with SARS-CoV-2 infection – United Kingdom and United States, March–August 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(40): 1450–56. https://dx.doi.org/10.15585/mmwr.mm6940e1. 8. Belay E.D., Abrams J., Oster M.E. et al. Trends in geographic and temporal distribution of US children with multisystem inflammatory syndrome during the COVID-19 pandemic. JAMA Pediatr. 2021; 175(8): 837–45. https://dx.doi.org/10.1001/jamapediatrics.2021.0630 9. Multisystem inflammatory syndrome in adults (MIS-A) case definition information for healthcare providers. Centers for Disease Control and Prevention. URL: https://www.cdc.gov/mis/mis-a/hcp.html (date of access – 11.03.2022). 10. Patel P., DeCuir J., Abrams J. et al. Clinical characteristics of multisystem inflammatory syndrome in adults. A systematic review. JAMA Netw Open. 2021; 4(9): e2126456. https://dx.doi.org/10.1001/jamanetworkopen.2021.26456. 11. Vogel T.P., Top K.A., Karatzios C. et al. Multisystem inflammatory syndrome in children and adults (MIS-C/A): Case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine. 2021; 39(22): 3037–49. https://dx.doi.org/10.1016/j.vaccine.2021.01.054. 12. Stratton C.W., Tang Y.W., Lu H. Pathogenesis-directed therapy of 2019 novel coronavirus disease. J Med Virol. 2021; 93(3): 1320–42. https://dx.doi.org/10.1002/jmv.26610. 13. Nazy I., Jevtic S.D., Moore J.C. et al. Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. J Thromb Haemost. 2021; 19(5): 1342–47. https://dx.doi.org/10.1111/jth.15283. 14. Brodard J., Kremer H.J.A., Fontanam P. et al. COVID-19 patients often show high-titer non-platelet-activating anti-PF4/heparin IgG antibodies. J Thromb Haemost. 2021; 19(5): 1294–98. https://dx.doi.org/10.1111/jth.15262. 15. Kumar M.A., Krishnaswamy M., Arul J.N. Post COVID-19 sequelae: Venous thromboembolism complicated by lower GI bleed. BMJ Case Rep. 2021; 14(1): e241059. https://dx.doi.org/10.1136/bcr-2020-241059. 16. Townsend L., Fogarty H., Dyer A. et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J Thromb Haemost. 2021; 19(4): 1064–70. https://dx.doi.org/10.1111/jth.15267. 17. Weatherhead J.E., Clark E., Vogel T.P. et al. Inflammatory syndromes associated with SARS-CoV-2 infection: dysregulation of the immune response across the age spectrum. J Clin Invest. 2020; 130(12): 6194–97. https://dx.doi.org/10.1172/JCI145301. 18. Weisberg S.P., Connors T.J., Zhu Y. et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat Immunol. 2021; 22(1): 25–31. https://dx.doi.org/10.1038/s41590-020-00826-9. 19. Webb B.J., Peltan I.D., Jensen P. et al. Clinical criteria for COVID-19-associated hyperinflammatory syndrome: A cohort study. Lancet Rheumatol. 2020; 2(12): 754–63. https://dx.doi.org/10.1016/S2665-9913(20)30343-X. 20. Tahaghoghi-Hajghorbani S., Zafari P., Masoumi E. et al. The role of dysregulated immune responses in COVID-19 pathogenesis. Virus Res. 2020; 290: 198197. https://dx.doi.org/10.1016/j.virusres.2020.198197. 21. Kuri-Cervantes L., Pampena M.B., Meng W. et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol. 2020; 5(49): eabd7114. https://dx.doi.org/10.1126/sciimmunol.abd7114. 22. Zhao J., Yuan Q., Wanget H. et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. 2020; 71(16): 2027–34. https://dx.doi.org/10.1093/cid/ciaa344. 23. Zhou Y., Fu B., Zheng X. et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020; 7(6): 998–1002. https://dx.doi.org/10.1093/nsr/nwaa041. 24. Guo C., Fu B., Zheng X. et al. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm. Nat Commun. 2020; 11(1): 3924. https://dx.doi.org/10.1038/s41467-020-17834-w. 25. Maucourant C., Filipovic I., Ponzetta A. et al. Natural killer cell immunotypes related to COVID-19 disease severity. Sci Immunol. 2020; 5(50): eabd6832. https://dx.doi.org/10.1126/sciimmunol.abd6832. 26. Garvin M.R., Alvarez C., Miller J.I. et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife. 2020; 9: e59177. https://dx.doi.org/10.7554/eLife.59177. 27. Vabret N., Britton G.J., Gruber C. et al. Immunology of COVID-19: current state of the science. Immunity 2020; 52(6): 910–41. https://dx.doi.org/10.1016/j.immuni.2020.05.002. 28. Woodruff M., Ramonell R.P., Cashman K.S. et al. Critically ill SARS-CoV-2 patients display lupus-like hallmarks of extrafollicular B cell activation. medRxiv 2020. https://dx.doi.org/10.1101/2020.04.29.20083717. 29. Chen G., Wu D., Guo W. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5): 2620–29. https://dx.doi.org/10.1172/JCI137244. 30. Gruber C.N., Patel R.S., Trachtman R. et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell. 2020; 183(4): 982–95.e14. https://dx.doi.org/10.1016/j.cell.2020.09.034. 31. Zhou Y., Fu B., Zheng X. et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020; 7(6): 998–1002. https://dx.doi.org/10.1093/nsr/nwaa041. 32. Зайратьянц О.В., Cамсонова М.В., Михалева Л.М. с соавт. Патологическая анатомия COVID-19: Атлас. Под общ. ред. О.В. Зайратьянца. Москва; ГБУ «НИИОЗММ ДЗМ». 2020; 140 с. 33. Diorio C., Henrickson S.E., Vella L.A. et al. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J Clin Invest. 2020; 130(11): 5967–75. https://dx.doi.org/10.1172/JCI140970. 34. Othenin-Girard A., Regamey J., Lamoth F. et al. Multisystem inflammatory syndrome with refractory cardiogenic shock due to acute myocarditis and mononeuritis multiplex after SARS-CoV-2 infection in an adult. Swiss Med Wkly. 2020; 150: w20387. https://dx.doi.org/10.4414/smw.2020.20387. 35. Godfred-Cato S. COVID-19-associated multisystem inflammatory syndrome in children – United States, March–July 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(32): 1074–80. https://dx.doi.org/10.15585/mmwr.mm6932e2. 36. Belhadjer Z. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation. 2020; 142(5): 429–36. https://dx.doi.org/10.1161/CIRCULATIONAHA.120.048360. 37. Feldstein L.R., Rose E.B., Horwitz S.M. et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020; 383(4): 334–46. https://dx.doi.org/10.1056/NEJMoa2021680. 38. Dufort E.M., Koumans E.H., Chow E.J. et al. Multisystem inflammatory syndrome in children in New York State. N Engl J Med. 2020; 383(4): 347–58. https://dx.doi.org/10.1056/NEJMoa2021756. 39. Davies P., Evans C., Kanthimathinathan H.K. et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: A multicentre observational study. Lancet Child Adolesc Health. 2020; 4(9): 669–77. https://dx.doi.org/10.1016/S2352-4642(20)30215-7. 40. Rowley A.H., Shulman S.T., Arditi M. Immune pathogenesis of COVID-19–related multisystem inflammatory syndrome in children. J Clin Investig. 2020; 130(11): 5619–21. https://dx.doi.org/10.1172/JCI143840. 41. Whittaker E., Bamford A., Kenny J. et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA. 2020; 324(3): 259–69. https://dx.doi.org/10.1001/jama.2020.10369. 42. Niaz T., Hope K., Fremed M. et al. Role of a pediatric cardiologist in the COVID-19 pandemic. Pediatr Cardiol. 2021; 42(1): 19–35. https://dx.doi.org/10.1007/s00246-020-02476-y. 43. Chau V.Q., Giustino G., Mahmood K. et al. Cardiogenic shock and hyperinflammatory syndrome in young males with COVID-19. Circ Heart Fail. 2020; 13(10): e007485. https://dx.doi.org/10.1161/CIRCHEARTFAILURE.120.007485. 44. McCrindle B.W., Rowley A.H., Newburger J.W. et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the American Heart Association. Circulation. 2017; 135(17): 927–99. https://dx.doi.org/10.1161/CIR.0000000000000484. 45. Moraleda C., Serna-Pascual M., Soriano-Arandes A. et al. Multi-inflammatory syndrome in children related to SARS-CoV-2 in Spain. Clin Infect Dis. 2021; 72(9): 397–401. https://dx.doi.org/10.1093/cid/ciaa1042. 46. Lee P.Y. Distinct clinical and immunological features of SARS-CoV-2-induced multisystem inflammatory syndrome in children. J Clin Invest. 2020; 130(11): 5942–50. https://dx.doi.org/10.1172/JCI141113. 47. Mucocutaneous symptom complexes. In: Long S., Pickering L., Prober C. (editors.) Principles and practice of pediatric infectious diseases. Edinburgh; New York: Elsevier. 2012. ISBN: 978-1-4377-2702-9. 48. Jain S., Sen S., Lakshmivenkateshiah S. et al. Multisystem inflammatory syndrome in children with COVID-19 in Mumbai, India. Indian Pediatr. 2020; 57(11): 1015–19. https://dx.doi.org/10.1007/s13312-020-2026-0. 49. Hechemy K.E. Oteo J.A., Raoult D. et al. A century of rickettsiology: Emerging, reemerging rickettsioses, clinical, epidemiologic, and molecular diagnostic aspects and emerging veterinary rickettsioses: An overview. Ann NY Acad Sci. 2006; 1078: 1–14. https://dx.doi.org/10.1196/annals.1374.001. 50. Duchin J.S., Koster F.T., Peters C.J. et al. Hantavirus pulmonary syndrome: A clinical description of 17 patients with a newly recognized disease. The Hantavirus Study Group. N Engl J Med. 1994; 330(14): 949–55. https://dx.doi.org/10.1056/NEJM199404073301401. 51. Marsh R.A. Epstein–Barr virus and hemophagocytic lymphohistiocytosis. Front Immunol. 2017; 8: 1902. https://dx.doi.org/10.3389/fimmu.2017.01902. 52. Schultz J.C., Hilliard A.A., Cooper L.T. Jr, Rihal C.S. Diagnosis and treatment of viral myocarditis. Mayo Clin Proc. 2009; 84(11): 1001–9. https://dx.doi.org/10.1016/S0025-6196(11)60670-8. 53. Hsu D.Y., Brieva J., Silverberg N.B. et al. Pediatric Stevens–Johnson syndrome and toxic epidermal necrolysis in the United States. J Am Acad Dermatol. 2017; 76(5): 811–17.e4. https://dx.doi.org/10.1016/j.jaad.2016.12.024. 54. Cacoub P., Musette P., Descamps V. et al. The DRESS syndrome: A literature review. Am J Med. 2011; 124(7): 588–97. https://dx.doi.org/10.1016/j.amjmed.2011.01.017.
Лаура Зелимхановна Болиева, д.м.н., профессор, зав. кафедрой фармакологии с клинической фармакологией ФГБОУ ВО «Северо-Осетинская государственная медицинская академия» Минздрава России. Адрес: 362019, г. Владикавказ, ул. Пушкинская, д. 40. E-mail: bolievalz@mail.ru. ORCID: https://orcid.org/0000-0002-3763-8994
Андрей Георгиевич Малявин, д.м.н., профессор, профессор кафедры фтизиатрии и пульмонологии лечебного факультета ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России. Адрес: 107150, г. Москва, ул. Лосиноостровская, д. 39, стр. 2. E-mail: maliavin@mail.ru. ORCID: https://orcid.org/0000-0002-6128-5914.
Нина Константиновна Айдарова, студентка ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России. Адрес: 107150, г. Москва, ул. Лосиноостровская, д. 39, стр. 2. E-mail: victoriabiragova@gmail.com.
Светлана Степановна Бязрова, к.м.н., доцент кафедры фармакологии с клинической фармакологией ФГБОУ ВО «Северо-Осетинская государственная медицинская академия» Минздрава России. Адрес: 362019, г. Владикавказ, ул. Пушкинская, д. 40. E-mail: svetapharm@yandex.ru