DOI: https://dx.doi.org/10.18565/therapy.2022.3.144-152
Kamchatnov P.R., Khanmurzayeva S.B., Chugunov A.V., Khanmurzayeva N.B.
1) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow; 2) Dagestan State Medical University of the Ministry of Healthcare of Russia, Makhachkala
1. Office for National Statistics. The prevalence of long COVID symptoms and COVID-19 complications. 16 December 2020. URL: https://www.ons.gov.uk/news/statementsandletters/theprevalenceoflongcovidsymptoms andcovid19complications (date of access – 11.01.2022). 2. PAHO, WHO. Epidemiological alert: Complications and sequelae of COVID-19. 12 Aug 2020. URL: https://www.paho.org/en/documents/epidemiological-alert-complications-and-sequelae-covid-19-12-august-2020 (date of access – 11.01.2022). 3. Wellcome Open Research. Perego E., Callard F., Stras L. et al. Why the patient-made term «Long Covid» is needed. 24 September 2020. URL: https://wellcomeopenresearch.org/articles/5-224 (date of access – 11.01.2022). 4. Editorial. Facing up to long COVID. Lancet. 2020; 396(10266): 1861. https://dx.doi.org/10.1016/S0140-6736(20)32662-3. 5. National Institute for Health and Care Excellence, Royal College of General Practitioners, Healthcare Improvement Scotland SIGN. COVID-19 rapid guideline: Managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence, 2020. URL: www.nice.org.uk/guidance/ng188 (date of access – 11.01.2022). 6. Barber C. The problem of «long haul» COVID. Scientific American. 29 December 2020. URL: https://www.scientificamerican.com/article/the-problem-of-long-haul-covid (date of access – 11.01.2022). 7. World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. URL: https://apps.who.int/iris/handle/10665/345824 (date of access – 11.01.2022). 8. Medscape. Wilson F.P. Is Long COVID Even Real? Nov 09, 2021. URL: https://www.medscape.com/viewarticle/962479 (date of access – 11.01.2022). 9. Medscape. Long COVID more common than «Long flu», study suggests. Sep 29; 2021. URL: https://www.medscape.com/viewarticle/959942 (date of access – 11.01.2022). 10. Molteni E., Sudre C.H., Canas L.S. et al. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. Lancet Child Adolesc Health. 2021; 5(10): 708–18. https://dx.doi.org/10.1016/S2352-4642(21)00198-X. 11. Davis H.E., Assaf G.S., McCorkell L. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021; 38: 101019. https://dx.doi.org/10.1016/j.eclinm.2021.101019. 12. Becker J. H., Lin J. J., Doernberg M. et al. Assessment of cognitive function in patients after COVID-19 infection. AMA Network Open. 2021; 4(10): e2130645. https://dx.doi.org/10.1001/jamanetworkopen.2021.30645. 13. Helms J., Kremer S., Merdji H. et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020; 382 (23): 2268–70. https://dx.doi.org/10.1056/NEJMc2008597. 14. Pandharipande P.P., Girard T.D., Jackson J.C. et al. BRAIN-ICU Study Investigators. Long-term cognitive impairment after critical illness. N Engl J Med. 2013; 369(14): 1306–16. https://dx.doi.org/10.1056/NEJMoa130137. 15. Beraki S., Aronsson F., Karlsson H. et al. Influenza A virus infection causes alterations in expression of synaptic regulatory genes combined with changes in cognitive and emotional behaviors in mice. Mol Psychiatry. 2005; 10(3): 299–308. https://dx.doi.org/10.1038/sj.mp.4001545. 16. Huang L., Yao Q., Gu X. et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet. 2021; 398(10302): 747–58. https://dx.doi.org/10.1016/S0140-6736(21)01755-4. 17. Thompson E.J., Williams D.M., Alex W.J. et al. Risk factors for long COVID: analyses of 10 longitudinal studies and electronic health records in the UK. medRxiv. 2021. https://dx.doi.org/10.1101/2021.06.24.21259277. Preprint. 18. Katsoularis I., Fonseca-Rodriguez O., Farrington P. et al. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet. 2021; 398(10300): 599–607. https://dx.doi.org/10.1016/S0140-6736(21)00896-5. 19. Thakkar S., Arora S., Kumar A. et al. A systematic review of the cardiovascular manifestations and outcomes in the setting of coronavirus-19 disease. Clin Med Insights Cardiol. 2020; 14: 1179546820977196. https://dx.doi.org/10.1177/1179546820977196. 20. Nersesjan V., Amiri M., Lebech A.M. et al. Central and peripheral nervous system complications of COVID 19: A prospective tertiary center cohort with 3 month follow up. Journal of Neurology. 2021; 268(9): 3086–104. https://dx.doi.org/10.1007/s00415-020-10380-x. 21. Garg S., Garg M., Prabhakar N., Malh А. et al. Unraveling the mystery of Covid-19 cytokine storm: from skin to organ systems. Dermatol Ther. 2020; 33(6): 1385–89. https://dx.doi.org/10.1111/dth.13859. 22. Aragao M., Leal M., Cartaxo Filho O. et al. Anosmia in COVID-19 associated with injury to the olfactory bulbs evident on MRI. AJNR Am J Neuroradiol. 2020; 41(9): 1703–6. https://dx.doi.org/10.3174/ajnr.A6675. 23. Strauss S., Lantos J., Heier L. et al. Olfactory bulb signal abnormality in patients with COVID-19 who present with neurologic symptoms. AJNR Am J Neuroradiol. 2020; 41(10): 1882–87. https://dx.doi.org/10.3174/ajnr.A6751. 24. Cosentino G., Todisco M., Hota N. et al. Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-CoV-2: A critical systematic review. Eur J Neurol. 2021; 28(11): 3856–65. https://dx.doi.org/10.1111/ene.15045. 25. Ye G., Pan Z., Pan Y. et al. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J Infect. 2020; 80(5): 14–17. https://dx.doi.org/10.1016/j.jinf.2020.03.001. 26. Lopez Castro J. Post-COVID-19 syndrome (PC19S): Chronic reactive endotheliitis and disseminated vascular disease. Acta Med Port. 2020; 33(12): 859. https://dx.doi.org/10.20344/amp.14612. 27. Sollini M., Ciccarelli M., Cecconi M. et al. Vasculitis changes in COVID-19 survivors with persistent symptoms: an [18F]FDG-PET/CT study. Eur J Nucl Med Mol Imaging. 2021; 48(5): 1460–66. https://dx.doi.org/10.1007/s00259-020-05084-3. 28. Hosp J.A., Dressing A., Blazhenets G. et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain. 2021; 144(4): 1263–76. https://dx.doi.org/10.1093/brain/awab009. 29. Afrin L., Weinstock L., Molderings G. Covid-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome. Int J Infect Dis. 2020; 100: 327–32. https://dx.doi.org/10.1016/j.ijid.2020.09.016. 30. Troubat R., Barone P., Leman S. et al. Neuroinflammation and depression: A review. Eur J Neurosci. 2021; 53(1): 151–71. https://dx.doi.org/10.1111/ejn.14720. 31. Verdu E.F., Bercik P., Verma-Gandhu M. et al. Probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut. 2006; 55(2): 182–90. https://dx.doi.org/10.1136/gut.2005.066100 32. Frohlich E.E., Farzi A., Mayerhofer R. et al. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav Immun. 2016; 56: 140–55. https://dx.doi.org/10.1016/j.bbi.2016.02.020. 33. Hoban A.E., Stilling R.M., Ryan F.J. et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry. 2016; 6: e774. https://dx.doi.org/10.1038/tp.2016.42. 34. Leclercq S., Mian F.M., Stanisz A.M. et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun. 2017; 8: 15062. https://dx.doi.org/10.1038/ncomms15062. 35. Erny D., Lena A., De Angelis H. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neurosci. 2015; 18(7): 965–77. https://dx.doi.org/10.1038/nn.4030. 36. George P.M., Barratt S.L., Condliffe R. et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax. 2020; 75 (11): 1009–16. https://dx.doi.org/10.1136/thoraxjnl-2020-215314. 37. Shah W., Hillman T., Playford E.D., Hishmeh L. Managing the long term effects of covid-19: Summary of NICE, SIGN, and RCGP rapid guideline. BMJ. 2021; 372: n136. https://dx.doi.org/10.1136/bmj.n136. 38. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 13.1 (09.11.2021). Минздрав России. Доступ: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/392/original/%D0%92%D0%9C%D0%A0-13.1-from-17-11-2021.pdf (дата обращения – 11.01.2022). [Interim guidelines «Prevention, diagnosis and treatment of novel coronavirus infection (COVID-19)». Version 13.1 (09.11.2021). Ministry of Healthcare of Russia. URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/392/original/%D0%92%D0%9C%D0%A0-13.1-from-17-11-2021.pdf (date of access – 11.01.2022). 39. Grigoletto I., Cavalheri V., Lima F.F., Ramos E.M.C. Recovery after COVID-19: The potential role of pulmonary rehabilitation. Braz J Phys Ther. 2020; 24(6): 463–64. https://dx.doi.org/10.1016/j.bjpt.2020.07.002. 40. Candan S.A., Elibol N., Abdullahi A. Consideration of prevention and management of long-term consequences of post-acute respiratory distress syndrome in patients with COVID-19. Physiother Theory Pract. 2020; 36(6): 663–68. https://dx.doi.org/10.1080/09593985.2020.1766181. 41. Halpin S.J., McIvor C., Whyatt G. et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol. 2021; 93(2): 1013–22. https://dx.doi.org/10.1002/jmv.26368. 42. Poyraz B.C., Poyraz C.A, Olgun Y. et al. Psychiatric morbidity and protracted symptoms after COVID-19. Psychiatry Res. 2021; 295: 113604. https://dx.doi.org/10.1016/j.psychres.2020.113604. 43. Lu Y., Li X., Geng D. et al. Cerebral micro-structural changes in COVID-19 patients – an MRI-based 3-month follow-up study. EClinicalMedicine. 2020; 25: 100484. https://dx.doi.org/10.1016/j.eclinm.2020.100484. 44. Камчатнов П.Р., Соловьева Э.Ю., Хасанова Д.Р., Фатеева В.В. Астенические и когнитивные нарушения у пациентов, перенесших COVID-19. РМЖ. Медицинское обозрение. 2021; 10: 636–641. [Kamchatnov P.R., Solov’eva E.Yu., Khasanova D.R., Fateeva V.V. Asthenic and cognitive disorders after the COVID-19 infection. Russkiy meditsinskiy zhurnal. Meditsinskoye obozreniye = Russian Medical Journal. Medical Review. 2021; 10: 636–641 (In Russ.)]. https://dx.doi.org/10.32364/2587-6821-2021-5-10-636-641. 45. Parums D.V. Editorial: Long COVID, or Post-COVID Syndrome, and the Global Impact on Health Care. Med Sci Monit. 2021; 27: e933446. https://dx.doi.org/10.12659/MSM.933446. 46. Duncan E., Cooper K., Cowie J. et al. A national survey of community rehabilitation service provision for people with long Covid in Scotland. F1000Res. 2021; 9: 1416. https://dx.doi.org/10.12688/f1000research.27894.2. 47. Орлов Ю.П., Афанасьев В.В., Хиленко И.А. Перспектива сукцинатов в условиях гипоксии при COVID-19. Антибиотики и химиотерапия. 2021; 1–2: 66–75. [Orlov Yu.P., Afanasyev V.V., Khilenko I.A. The Prospects of succinates’ use under hypoxic conditions in COVID-19. Antibiotiki i khimiotherapiya = Antibiotics and Chemotherapy. 2021; 1–2: 66–75 (In Russ.)]. https://dx.doi.org/10.24411/0235-2990-2021-66-1–2-66-75. 48. Камчатнов П.Р., Абусуева Б.А., Евзельман М.А. с соавт. Течение острого ишемического инсульта у больных, получавших Цитофлавин. Современная медицина. 2020; 1: 157–159. [Kamchatnov P.R., Abusueva B.A., Evzelman M.A. et al. The course of acute ischemic stroke in patients receiving Cytoflavin. Sovremennaya meditsina = Modern Medicine. 2020; 1: 157–159 (In Russ.)]. https://dx.doi.org/10.31550/1727-2378-2019-161-6-23-26. 49. Кондрашова М.Н. Гормоноподобное действие янтарной кислоты. Вопросы биологической медицины и фармацевтической химии. 2002; 1: 7–11. [Kondrashova M.N. Hormone-like action of succinic acid. Voprosy biologicheskoy meditsiny i farmacevticheskoy khimii = Issues of Biological Medicine and Pharmaceutical Chemistry. 2002; 1: 7–11 (In Russ.)]. 50. Оленская Т.Л. Инновационные методы реабилитации на амбулаторном и домашнем этапах у пациентов после пневмонии COVID-19. Медицинский совет. 2021; 4: 220–229. [Alenskaya T.L. Innovative methods of rehabilitation at the outpatient and home stages in patients after pneumonia COVID-19. Meditsinskiy sovet = Medical Council. 2021; 4:220–229 (In Russ.)]. https://dx.doi.org/10.21518/2079-701X-2021-4-220-229.
Pavel R. Kamchatnov, Dr. med.habil., professor, professor of the Department of neurology, neurosurgery and medical genetics, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityaninova Str. E-mail: pavkam7@gmail.com. ORCID: https://orcid.org/0000-0001-6747-3476
Saida B. Khanmurzaeva, PhD in Medicine, assistant at the Department of nervous diseases, medical genetics and neurosurgery, Dagestan State Medical University of the Ministry of Healthcare of Russia. Address: 367000, Makhachkala, 47 Lyakhova Str. ORCID: https://orcid.org/0000-0002-6380-3156
Alexander V. Chugunov, PhD in Medicine, associate professor, professor of the Department of neurology, neurosurgery and medical genetics, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityaninova Str. ORCID: https://orcid.org/0000-0001-5527-2458
Naida B. Khanmurzaeva, PhD in Medicine, senior lecturer at the Department of pharmacology, Dagestan State Medical University of the Ministry of Healthcare of Russia. Address: 367012, Makhachkala, 1 Lenina Sq.
ORCID: https://orcid.org/0000-0002-3102-5230