Invasive fungal infections in patients with COVID-19


DOI: https://dx.doi.org/10.18565/therapy.2022.5.74-80

Bolieva L.Z., Malyavin A.G., Ovsyannikova A.I.

1) North Ossetian State Medical Academy of the Ministry of Healthcare of Russia, Vladikavkaz; 2) A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia, Moscow
Abstract. COVID-19 is sometimes associated with the onset of secondary infections, more often in severe cases treated in the intensive care unit. Bacterial pathogens are the most common pathogens, but a certain number of patients are at high risk of invasive fungal infections, in particular, invasive candidiasis, which can have a severe course and cause death of the patient. Additionally, invasive candidiasis has no pathognomonic features, most of causative fungal species have reduced susceptibility to first-line treatments and almost all antifungal medications are highly toxic. All of the above determines the need to generalize and discuss the available data on risk factors, diagnosis, clinical features, treatment and prevention of invasive candidiasis in patients with COVID-19.

Literature


1. Хостелиди С.Н., Шагдилеева Е.В., Шадривова О.В. с соавт. Случай генерализованного сочетанного микоза на фоне острой респираторной вирусной инфекции. Проблемы медицинской микологии. 2019; 4: 24–29. [Khostelidi S.N., Shagdileeva E.V., Shadrivova O.V. et al. The case of generalized combined mycosis on the background of acute respiratory viral infection. The Problems of Medical Mycology. 2019; 4: 24–29 (In Russ.)]. https://dx.doi.org/10.24412/1999-6780-2019-4-24-29. EDN: OQZIXE.


2. Schauwvlieghe A.F.A.D., Rijnders B.J.A., Philips N. et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: A retrospective cohort study. Lancet Respir Med. 2018; 6(10): 782–92. https://dx.doi.org/10.1016/S2213-2600(18)30274-1.


3. Хостелиди С.Н., Зайцев В.А., Пелих Е.В. с соавт. Мукормикоз на фоне COVID-19: описание клинического случая и обзор литературы. Клиническая микробиология и антимикробная химиотерапия. 2021; 3: 256–262. [Khostelidi S.N., Zaytsev V.A., Pelikh E.V. et al. Mucormycosis following COVID-19: clinical case and literature review. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy. 2021; 3: 256–262 (In Russ.)].https://dx.doi.org/10.36488/cmac.2021.3.255-262. EDN: KVDDYF.


4. Zhu X., Ge Y., Wu T. et al. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020; 285: 198005.https://dx.doi.org/10.1016/j.virusres.2020.198005.


5. Talento A.F., Hoenig M. Fungal infections complicating COVID-19: With the rain comes the spores. J Fungi (Basel). 2020; 6(4): 279–80. https://dx.doi.org/10.3390/jof6040279.


6. Васильева Н.В., Климко Н.Н., Цинзерлинг В.А. Диагностика и лечение инвазивных микозов: современные рекомендации. Вестник Санкт-петербургской медицинской академии последипломного образования. 2010; 4: 5–18. [Vassilieva N.V., Klimko N.N., Zinserlin V.A. Modern recommendations for diagnosis and treatment of invasive mycosis. Vestnik Sankt-peterburgskoy meditsinskoy akademii poslediplomnogo obrazovaniya = Bulletin of Saint Petersburg Medical Academy of Postgraduate Education. 2010; 4: 5–18 (In Russ.)]. EDN: NXUDQT.


7. Arastehfar A., Carvalho A., Nguyen M.H. et al. COVID-19-associated candidiasis (CAC): An underestimated complication in the absence of immunological predispositions? J. Fungi. 2020; 6(4): 211. https://dx.doi.org/10.3390/JOF6040211.


8. Chiurlo M., Mastrangelo A., Ripa M., Scarpellini P. Invasive fungal infections in patients with COVID-19: A review on pathogenesis, epidemiology, clinical features, treatment, and outcomes. New Microbiol. 2021; 44(2): 71–83.


9. Cuntro M., Manisco A., Guarneri D. et al. Blood stream infections during the first wave of COVID-19. A short microbiological retrospective picture at Papa Giovanni XXIII Hospital, Bergamo, Italy. New Microbiol. 2021; 44(1): 51–58.


10. Falcone M., Tiseo G., Giordano C. et al. Predictors of hospital-acquired bacterial and fungal superinfections in COVID-19: A prospective observational study. J Antimicrob Chemother. 2021; 76(4): 1078–84. https://dx.doi.org/10.1093/jac/dkaa530.


11. Grasselli G., Scaravilli V., Mangioni D. et al. Hospital-acquired infections in critically-ill COVID-19 patients. Chest. 2021; 160(2): 454–65. https://dx.doi.org/10.1016/j.chest.2021.04.002.


12. Nucci M., Barreiros G., Guimaraes L.F. et al. Increased incidence of candidemia in a tertiary care hospital with the COVID-19 pandemic. Mycoses. 2021; 64(20): 152–56. https://dx.doi.org/10.1111/myc.13225.


13. Chowdhary A., Tarai B., Singh A., Sharma A. Multidrug resistant Candida auris infections in critically ill coronavirus disease patients, India, April–July 2020. Emerg Infect Dis. 2020; 26(11): 2694–96. https://dx.doi.org/10.3201/EID2611.203504.


14. Jerez Puebla L.E. Fungal infections in immunosuppressed patients. Immunodeficiency. 2012. https://dx.doi.org/10.5772/51512.


15. Bommanavar S.B., Gugwad S., Malik N. Phenotypic switch: The enigmatic white-gray-opaque transition system of Candida albicans. J Oral Maxillofac Pathol. 2017; 21(1): 82–86. https://dx.doi.org/10.4103/0973-029X.203781.


16. Chakrabarti A., Sood P. On the emergence, spread and resistance of Candida auris: Host, pathogen and environmental tipping points. J Med Microbiol. 2021; 70(3): 001318. https://dx.doi.org/10.1099/JMM.0.001318.


17. Garcia M.C., Lee J.T., Ramsook C.B. et al. A role for amyloid in cell aggregation and biofilm formation. PLoS One. 2011; 6(3): e17632. https://dx.doi.org/10.1371/journal.pone.0017632.


18. Odds F.C. Secreted proteinases and Candida albicans virulence. Microbiology. 2008; 154(11): 3245–46.https://dx.doi.org/10.1099/mic.0.2008/023671-0.


19. Sudbery P.E. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011; 9(10): 737–48. https://dx.doi.org/10.1038/nrmicro2636.


20. Pathakumari B., Liang G., Liu W. Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother. 2020; 130: 110550. https://dx.doi.org/10.1016/j.biopha.2020.110550.


21. Kasper L., Franke A., Mogavero S. et al. Role of the fungal peptide toxin Candidalysin in macrophage damage and inflammatory response. Mycoses. 2016; 59: 15.


22. Mastrangelo A., Germinario B.N., Ferrante M. et al. COVID-BioB Study Group. Candidemia in COVID-19 patients: Incidence and characteristics in a prospective cohort compared to historical non-COVID-19 controls. Clin Infect Dis. 2021; 73(9): 2838–39.https://dx.doi.org/10.1093/cid/ciaa1594.


23. Arunachalam P.S., Wimmers F., Mok C.K.P. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science. 2020; 369(6508): 1210–220. https://dx.doi.org/10.1126/science.abc6261.


24. Lamers M.M., Beumer J., Vaart J. et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020; 369(6499): 50–54. https://dx.doi.org/10.1126/science.abc1669.


25. Zuo T., Zhan H., Zhang F. et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterology. 2020; 159(4): 1302–10. https://dx.doi.org/10.1053/j.gastro.2020.06.048.


26. Abelenda-Alonso G., Padulles A., Rombauts A. et al. Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern. Infect Control Hosp Epidemiol. 2020; 41(11): 1371–72. https://dx.doi.org/10.1017/ice.2020.381.


27. Guisado-Gil A.B., Infante-Dominguez C., Penalva G. et al. Impact of the COVID-19 pandemic on antimicrobial consumption and hospital-acquired candidemia and multidrug-resistant bloodstream infections. Antibiotics (Basel). 2020; 9(11): 816.https://dx.doi.org/10.3390/antibiotics9110816.


28. Langford B.J., So M., Raybardhan S., Leung V. et al. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin Microbiol Infect. 2020; 26(12): 1622–29. https://dx.doi.org/10.1016/j.cmi.2020.07.016.


29. Rawson T.M., Moore L.S.P., Zhu N. et al. Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19. Clin Infect Dis. 2020; 71(9): 2459–68. https://dx.doi.org/10.1093/cid/ciaa530.


30. Richardson S., Hirsch J.S., Narasimhan M. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323(20): 2052–59. https://dx.doi.org/10.1001/jama.2020.6775.


31. Ripa M., Galli L., Poli A. et al. Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clin Microbiol Infect. 2021; 27(3): 451–57. https://dx.doi.org/10.1016/j.cmi.2020.10.021.


32. Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag. 2014: 10; 95–105.https://dx.doi.org/10.2147/TCRM.S40160.


33. Vaughn V.M., Gandhi T.N., Petty L.A. et al. Empiric antibacterial therapy and community-onset bacterial coinfection in patients hospitalized with coronavirus disease 2019 (COVID-19): A multi-hospital cohort study. Clin Infect Dis. 2021; 72(10): e533–e541.https://dx.doi.org/10.1093/cid/ciaa1239.


34. Antinori S., Bonazzetti C., Gubertini G. et al. Tocilizumab for cytokine storm syndrome in COVID-19 pneumonia: an increased risk for candidemia? Autoimmun Rev. 2020; 19(7): 102564. https://dx.doi.org/10.1016/j.autrev.2020.102564.


35. Kimmig L.M., Wu D., Gold M. et al. IL-6 inhibition in critically ill COVID-19 patients is associated with increased secondary infections. Front Med (Lausanne). 2020; 7: 583897. https://dx.doi.org/10.3389/fmed.2020.583897.


36. Riche C.V.W., Cassol R., Pasqualotto A.C. Is the frequency of candidemia increasing in COVID-19 patients receiving corticosteroids? J Fungi (Basel). 2020; 6(4): 286. https://dx.doi.org/10.3390/jof6040286.


37. Tang Y., Liu J., Zhang D. et al. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front Immunol. 2020; 11: 1708. https://dx.doi.org/10.3389/fimmu.2020.01708.


38. Heidenreich S., Kubis T., Schmidt M., Fegeler W. Glucocorticoid-induced alterations of monocyte defense mechanisms against Candida albicans. Cell Immunol. 1994; 157(2): 320–27. https://dx.doi.org/10.1006/CIMM.1994.1230.


39. Riad A., Gomaa E., Hockova B., Klugar M. Oral candidiasis of COVID-19 patients: Case report and review of evidence. J Cosmet Dermatol. 2021; 20(6): 1580–84. https://dx.doi.org/10.1111/JOCD.14066.


40. Corchuelo J., Ulloa F.C. Oral manifestations in a patient with a history of asymptomatic COVID-19: Case report. Int J Infect Dis. 2020; 100: 154–57. https://dx.doi.org/10.1016/j.ijid.2020.08.071.


41. Jeronimo L.S., Esteves Lima R.P., Suzuki T. et al. Oral candidiasis and COVID-19 in users of removable dentures: Is special oral care needed? Gerontology. 2022; 68(1): 80–85. https://dx.doi.org/10.1159/000515214.


42. Nieto M., Robles J.C., Causse M. et al. Polymerase chain reaction versus blood culture to detect candida species in high-risk patients with suspected invasive candidiasis: The MICAFEM study. Infect Dis Ther. 2019; 8(3): 429–44.https://dx.doi.org/10.1007/S40121-019-0248-Z.


43. Arastehfar A., Carvalho A., Nguyen M.H. et al. COVID-19-associated candidiasis (CAC): An underestimated complication in the absence of immunological predispositions? J Fungi (Basel). 2020; 6(4): 211. https://dx.doi.org/10.3390/jof6040211.


44. Song G., Liang G., Liu W. Fungal co-infections associated with global COVID-19 pandemic: A clinical and diagnostic perspective from China. Mycopathologia. 2020; 185(4): 599–606. https://dx.doi.org/10.1007/S11046-020-00462-9.


45. Рябинин И.А., Сальникова В.А., Васильева Н.В. Аннотация MALDI-масс-спектров клеточной биомассы штаммов Candida albicans berkhout. Проблемы медицинской микологии. 2022; 1: 41–52. [Ryabinin I.A., Salnikova V.A., Vasilyeva N.V. Annotation of MASS-spectra of cellular biomass from Candida albicans Berkhout strains. Problemy meditsinskoy mikologii = Issues of Medical Mycology. 2022; 1: 41–52 (In Russ.)]. https://dx.doi.org/10.24412/1999-6780-2022-1-41-52. EDN: VGECAP.


46. Clancy C.J., Nguyen M.H. Diagnosing invasive candidiasis. J Clin Microbiol. 2018; 56(5): 01909–17.https://dx.doi.org/10.1128/JCM.01909-17.


47. Иванова Л.В., Баранцевич Е.П., Шляхто Е.В. Резистентность грибов-патогенов к антимикотикам (обзор). Проблемы медицинской микологии. 2011; 1: 14–17. [Ivanova L.V., Barantsevich E.P., Shlyakchto E.V. Resistance of fungi-pathogens to antifungal preparations (revirew). Problemy meditsinskoy mikologii = Issues of Medical Mycology. 2011; 1: 14–17 (in Russ.)]. EDN: NMZBQR.


48. de Oliveira Santos G.C., Vasconcelos C.C., Lopes A.J.O. et al. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol. 2018; 9: 1351. https://dx.doi.org/10.3389/FMICB.2018.01351.


49. Mazur P., Baginsky W. In vitro activity of 1,3-β-D-glucan synthase requires the GTP-binding protein Rho1. J Biol Chem. 1996; 271(24): 14604–9. https://dx.doi.org/10.1074/jbc.271.24.14604.


50. Park S., Kelly R., Kahn J.N. et al. Specific substitutions in the echinocandin target fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother. 2005; 49(8): 3264–73.https://dx.doi.org/10.1128/AAC.49.8.3264-3273.2005.


51. Garcia-Effron G., Park S., Perlin D.S. Correlating echinocandin MIC and kinetic inhibition of FKS1 mutant glucan synthases for Candida albicans: Implications for interpretive breakpoints. Antimicrob Agents Chemother. 2009; 53(1): 112–22.https://dx.doi.org/10.1128/AAC.01162-08.


52. Shields R.K., Nguyen M.H., Press E.G. et al. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob Agents Chemother. 2012; 56(9): 4862–69. https://dx.doi.org/10.1128/AAC.00027-12.


53. Alexander B.D., Johnson M.D., Pfeiffer C.D. et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis. 2013; 56(12): 1724–32.https://dx.doi.org/10.1093/cid/cit136.


54. Shields R., Nguyen M., Press E. et al. Caspofungin MICs correlate with treatment outcomes among patients with Candida glabrata invasive candidiasis and prior echinocandin exposure. Antimicrob Agents Chemother. 2013; 57(8): 3528–35.https://dx.doi.org/10.1128/AAC.00136-13.


55. Hou X., Healey K.R., Shor E. et al. Novel FKS1 and FKS2 modifications in a high-level echinocandin resistant clinical isolate of Candida glabrata. Emerg Microbes Infect. 2019; 8(1): 1619–25. https://dx.doi.org/10.1080/22221751.2019.1684209.


56. Lewis J.S., 2nd, Wiederhold N.P., Wickes B.L. et al. Rapid emergence of echinocandin resistance in Candida glabrata resulting in clinical and microbiologic failure. Antimicrob Agents Chemother. 2013; 57(9): 4559–61. https://dx.doi.org/10.1128/AAC.01144-13.


57. Bhatt K., Agolli A., Patel M.H. et al. High mortality co-infections of COVID-19 patients: Mucormycosis and other fungal infections. Discoveries. 2021; 9(1): e126. https://dx.doi.org/10.15190/D.2021.5.


58. Chaabane F., Graf A., Jequier L., Coste A.T. Review on antifungal resistance mechanisms in the emerging pathogen Candida auris. Front Microbiol. 2019; 10: 2788. https://dx.doi.org/10.3389/FMICB.2019.02788.


59. Sanguinetti M., Posteraro B., Lass-Florl C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses. 2015; 58(Suppl 2): 2–13. https://dx.doi.org/10.1111/MYC.12330.


60. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции COVID-19». Версия 15 (22.02.2022). Минздрав России. Доступ: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/BMP_COVID-19_V15.pdf (дата обращения – 04.06.2022). [Interim guidelines «Prevention, diagnosis and treatment of a new coronavirus infection COVID-19». Version 15 (02/22/2022). Ministry of Healthcare of Russia. URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/BMP_COVID-19_V15.pdf (date of access – 04.06.2022) (In Russ.)].


About the Autors


Laura Z. Bolieva, Dr. med. habil., professor, head of the Department of pharmacology with clinical pharmacology, North Ossetian State Medical Academy of the Ministry of Healthcare of Russia. Address: 362019, Vladikavkaz, 40 Pushkinskaya Str. E-mail: bolievalz@mail.ru. ORCID: https://orcid.org/0000-0002-3763-8994
Andrey G. Malyavin, Dr. med. habil., professor, professor of the Department of phthisiology and pulmonology of the Faculty of general medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia. Address: 107150, Moscow, 39/2 Losinoostrovskaya Str. E-mail: maliavin@mail.ru.
ORCID: https://orcid.org/0000-0002-6128-5914. Scopus Author ID: 6701876872
Alevtina I. Ovsyannikova, PhD in Medicine, associate professor of the Department of pharmacology with clinical pharmacology, North Ossetian State Medical Academy of the Ministry of Healthcare of Russia. Address: 362019, Vladikavkaz, 40 Pushkinskaya Str. E-mail: logitech@mail.ru


Бионика Медиа