Инвазивный кандидоз у пациентов с новой коронавирусной инфекцией COVID-19


DOI: https://dx.doi.org/10.18565/therapy.2022.5.74-80

Л.З. Болиева, А.Г. Малявин, А.И. Овсянникова

1) ФГБОУ ВО «Северо-Осетинская государственная медицинская академия» Минздрава России, г. Владикавказ; 2) ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
Аннотация. У части пациентов течение новой коронавирусной инфекции COVID-19 осложняется вторичной инфекцией, при этом наиболее часто это происходит в ОРИТ. Основными возбудителями вторичной инфекции выступают бактерии, однако ряд пациентов находится в группе высокого риска инвазивных микозов (в частности, инвазивного кандидоза), которые могут иметь тяжелое течение и служить причиной смерти больного. Инвазивный кандидоз в большинстве случаев не имеет характерной клинической картины, часто отмечается низкая чувствительность выделенных возбудителей к противогрибковым препаратам первого ряда. В то же время большая часть противогрибковых препаратов отличается высокой токсичностью. Все это определяет актуальность обобщения и обсуждения имеющихся данных о факторах риска, клинических проявлениях, диагностике (в том числе дифференциальной), лечении и профилактике инвазивного кандидоза у пациентов с COVID-19.

Литература


1. Хостелиди С.Н., Шагдилеева Е.В., Шадривова О.В. с соавт. Случай генерализованного сочетанного микоза на фоне острой респираторной вирусной инфекции. Проблемы медицинской микологии. 2019; 4: 24–29.


2. Schauwvlieghe A.F.A.D., Rijnders B.J.A., Philips N. et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: A retrospective cohort study. Lancet Respir Med. 2018; 6(10): 782–92. https://dx.doi.org/10.1016/S2213-2600(18)30274-1.


3. Хостелиди С.Н., Зайцев В.А., Пелих Е.В. с соавт. Мукормикоз на фоне COVID-19: описание клинического случая и обзор литературы. Клиническая микробиология и антимикробная химиотерапия. 2021; 3: 256–262.


4. Zhu X., Ge Y., Wu T. et al. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020; 285: 198005.https://dx.doi.org/10.1016/j.virusres.2020.198005.


5. Talento A.F., Hoenig M. Fungal infections complicating COVID-19: With the rain comes the spores. J Fungi (Basel). 2020; 6(4): 279–80. https://dx.doi.org/10.3390/jof6040279.


6. Васильева Н.В., Климко Н.Н., Цинзерлинг В.А. Диагностика и лечение инвазивных микозов: современные рекомендации. Вестник Санкт-петербургской медицинской академии последипломного образования. 2010; 4: 5–18.


7. Arastehfar A., Carvalho A., Nguyen M.H. et al. COVID-19-associated candidiasis (CAC): An underestimated complication in the absence of immunological predispositions? J. Fungi. 2020; 6(4): 211. https://dx.doi.org/10.3390/JOF6040211.


8. Chiurlo M., Mastrangelo A., Ripa M., Scarpellini P. Invasive fungal infections in patients with COVID-19: A review on pathogenesis, epidemiology, clinical features, treatment, and outcomes. New Microbiol. 2021; 44(2): 71–83.


9. Cuntro M., Manisco A., Guarneri D. et al. Blood stream infections during the first wave of COVID-19. A short microbiological retrospective picture at Papa Giovanni XXIII Hospital, Bergamo, Italy. New Microbiol. 2021; 44(1): 51–58.


10. Falcone M., Tiseo G., Giordano C. et al. Predictors of hospital-acquired bacterial and fungal superinfections in COVID-19: A prospective observational study. J Antimicrob Chemother. 2021; 76(4): 1078–84. https://dx.doi.org/10.1093/jac/dkaa530.


11. Grasselli G., Scaravilli V., Mangioni D. et al. Hospital-acquired infections in critically-ill COVID-19 patients. Chest. 2021; 160(2): 454–65. https://dx.doi.org/10.1016/j.chest.2021.04.002.


12. Nucci M., Barreiros G., Guimaraes L.F. et al. Increased incidence of candidemia in a tertiary care hospital with the COVID-19 pandemic. Mycoses. 2021; 64(20): 152–56. https://dx.doi.org/10.1111/myc.13225.


13. Chowdhary A., Tarai B., Singh A., Sharma A. Multidrug resistant Candida auris infections in critically ill coronavirus disease patients, India, April–July 2020. Emerg Infect Dis. 2020; 26(11): 2694–96. https://dx.doi.org/10.3201/EID2611.203504.


14. Jerez Puebla L.E. Fungal infections in immunosuppressed patients. Immunodeficiency. 2012. https://dx.doi.org/10.5772/51512.


15. Bommanavar S.B., Gugwad S., Malik N. Phenotypic switch: The enigmatic white-gray-opaque transition system of Candida albicans. J Oral Maxillofac Pathol. 2017; 21(1): 82–86. https://dx.doi.org/10.4103/0973-029X.203781.


16. Chakrabarti A., Sood P. On the emergence, spread and resistance of Candida auris: Host, pathogen and environmental tipping points. J Med Microbiol. 2021; 70(3): 001318. https://dx.doi.org/10.1099/JMM.0.001318.


17. Garcia M.C., Lee J.T., Ramsook C.B. et al. A role for amyloid in cell aggregation and biofilm formation. PLoS One. 2011; 6(3): e17632. https://dx.doi.org/10.1371/journal.pone.0017632.


18. Odds F.C. Secreted proteinases and Candida albicans virulence. Microbiology. 2008; 154(11): 3245–46.https://dx.doi.org/10.1099/mic.0.2008/023671-0.


19. Sudbery P.E. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011; 9(10): 737–48. https://dx.doi.org/10.1038/nrmicro2636.


20. Pathakumari B., Liang G., Liu W. Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother. 2020; 130: 110550. https://dx.doi.org/10.1016/j.biopha.2020.110550.


21. Kasper L., Franke A., Mogavero S. et al. Role of the fungal peptide toxin Candidalysin in macrophage damage and inflammatory response. Mycoses. 2016; 59: 15.


22. Mastrangelo A., Germinario B.N., Ferrante M. et al. COVID-BioB Study Group. Candidemia in COVID-19 patients: Incidence and characteristics in a prospective cohort compared to historical non-COVID-19 controls. Clin Infect Dis. 2021; 73(9): 2838–39.https://dx.doi.org/10.1093/cid/ciaa1594.


23. Arunachalam P.S., Wimmers F., Mok C.K.P. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science. 2020; 369(6508): 1210–220. https://dx.doi.org/10.1126/science.abc6261.


24. Lamers M.M., Beumer J., Vaart J. et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020; 369(6499): 50–54. https://dx.doi.org/10.1126/science.abc1669.


25. Zuo T., Zhan H., Zhang F. et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterology. 2020; 159(4): 1302–10. https://dx.doi.org/10.1053/j.gastro.2020.06.048.


26. Abelenda-Alonso G., Padulles A., Rombauts A. et al. Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern. Infect Control Hosp Epidemiol. 2020; 41(11): 1371–72. https://dx.doi.org/10.1017/ice.2020.381.


27. Guisado-Gil A.B., Infante-Dominguez C., Penalva G. et al. Impact of the COVID-19 pandemic on antimicrobial consumption and hospital-acquired candidemia and multidrug-resistant bloodstream infections. Antibiotics (Basel). 2020; 9(11): 816.https://dx.doi.org/10.3390/antibiotics9110816.


28. Langford B.J., So M., Raybardhan S., Leung V. et al. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin Microbiol Infect. 2020; 26(12): 1622–29. https://dx.doi.org/10.1016/j.cmi.2020.07.016.


29. Rawson T.M., Moore L.S.P., Zhu N. et al. Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19. Clin Infect Dis. 2020; 71(9): 2459–68. https://dx.doi.org/10.1093/cid/ciaa530.


30. Richardson S., Hirsch J.S., Narasimhan M. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323(20): 2052–59. https://dx.doi.org/10.1001/jama.2020.6775.


31. Ripa M., Galli L., Poli A. et al. Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clin Microbiol Infect. 2021; 27(3): 451–57. https://dx.doi.org/10.1016/j.cmi.2020.10.021.


32. Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag. 2014: 10; 95–105.https://dx.doi.org/10.2147/TCRM.S40160.


33. Vaughn V.M., Gandhi T.N., Petty L.A. et al. Empiric antibacterial therapy and community-onset bacterial coinfection in patients hospitalized with coronavirus disease 2019 (COVID-19): A multi-hospital cohort study. Clin Infect Dis. 2021; 72(10): e533–e541.https://dx.doi.org/10.1093/cid/ciaa1239.


34. Antinori S., Bonazzetti C., Gubertini G. et al. Tocilizumab for cytokine storm syndrome in COVID-19 pneumonia: an increased risk for candidemia? Autoimmun Rev. 2020; 19(7): 102564. https://dx.doi.org/10.1016/j.autrev.2020.102564.


35. Kimmig L.M., Wu D., Gold M. et al. IL-6 inhibition in critically ill COVID-19 patients is associated with increased secondary infections. Front Med (Lausanne). 2020; 7: 583897. https://dx.doi.org/10.3389/fmed.2020.583897.


36. Riche C.V.W., Cassol R., Pasqualotto A.C. Is the frequency of candidemia increasing in COVID-19 patients receiving corticosteroids? J Fungi (Basel). 2020; 6(4): 286. https://dx.doi.org/10.3390/jof6040286.


37. Tang Y., Liu J., Zhang D. et al. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front Immunol. 2020; 11: 1708. https://dx.doi.org/10.3389/fimmu.2020.01708.


38. Heidenreich S., Kubis T., Schmidt M., Fegeler W. Glucocorticoid-induced alterations of monocyte defense mechanisms against Candida albicans. Cell Immunol. 1994; 157(2): 320–27. https://dx.doi.org/10.1006/CIMM.1994.1230.


39. Riad A., Gomaa E., Hockova B., Klugar M. Oral candidiasis of COVID-19 patients: Case report and review of evidence. J Cosmet Dermatol. 2021; 20(6): 1580–84. https://dx.doi.org/10.1111/JOCD.14066.


40. Corchuelo J., Ulloa F.C. Oral manifestations in a patient with a history of asymptomatic COVID-19: Case report. Int J Infect Dis. 2020; 100: 154–57. https://dx.doi.org/10.1016/j.ijid.2020.08.071.


41. Jeronimo L.S., Esteves Lima R.P., Suzuki T. et al. Oral candidiasis and COVID-19 in users of removable dentures: Is special oral care needed? Gerontology. 2022; 68(1): 80–85. https://dx.doi.org/10.1159/000515214.


42. Nieto M., Robles J.C., Causse M. et al. Polymerase chain reaction versus blood culture to detect candida species in high-risk patients with suspected invasive candidiasis: The MICAFEM study. Infect Dis Ther. 2019; 8(3): 429–44.https://dx.doi.org/10.1007/S40121-019-0248-Z.


43. Arastehfar A., Carvalho A., Nguyen M.H. et al. COVID-19-associated candidiasis (CAC): An underestimated complication in the absence of immunological predispositions? J Fungi (Basel). 2020; 6(4): 211. https://dx.doi.org/10.3390/jof6040211.


44. Song G., Liang G., Liu W. Fungal co-infections associated with global COVID-19 pandemic: A clinical and diagnostic perspective from China. Mycopathologia. 2020; 185(4): 599–606. https://dx.doi.org/10.1007/S11046-020-00462-9.


45. Рябинин И.А., Сальникова В.А., Васильева Н.В. Аннотация MALDI-масс-спектров клеточной биомассы штаммов Candida albicans berkhout. Проблемы медицинской микологии. 2022; 1: 41–52.


46. Clancy C.J., Nguyen M.H. Diagnosing invasive candidiasis. J Clin Microbiol. 2018; 56(5): 01909–17.https://dx.doi.org/10.1128/JCM.01909-17.


47. Иванова Л.В., Баранцевич Е.П., Шляхто Е.В. Резистентность грибов-патогенов к антимикотикам (обзор). Проблемы медицинской микологии. 2011; 1: 14–17.


48. de Oliveira Santos G.C., Vasconcelos C.C., Lopes A.J.O. et al. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol. 2018; 9: 1351. https://dx.doi.org/10.3389/FMICB.2018.01351.


49. Mazur P., Baginsky W. In vitro activity of 1,3-β-D-glucan synthase requires the GTP-binding protein Rho1. J Biol Chem. 1996; 271(24): 14604–9. https://dx.doi.org/10.1074/jbc.271.24.14604.


50. Park S., Kelly R., Kahn J.N. et al. Specific substitutions in the echinocandin target fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother. 2005; 49(8): 3264–73.https://dx.doi.org/10.1128/AAC.49.8.3264-3273.2005.


51. Garcia-Effron G., Park S., Perlin D.S. Correlating echinocandin MIC and kinetic inhibition of FKS1 mutant glucan synthases for Candida albicans: Implications for interpretive breakpoints. Antimicrob Agents Chemother. 2009; 53(1): 112–22.https://dx.doi.org/10.1128/AAC.01162-08.


52. Shields R.K., Nguyen M.H., Press E.G. et al. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob Agents Chemother. 2012; 56(9): 4862–69. https://dx.doi.org/10.1128/AAC.00027-12.


53. Alexander B.D., Johnson M.D., Pfeiffer C.D. et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis. 2013; 56(12): 1724–32.https://dx.doi.org/10.1093/cid/cit136.


54. Shields R., Nguyen M., Press E. et al. Caspofungin MICs correlate with treatment outcomes among patients with Candida glabrata invasive candidiasis and prior echinocandin exposure. Antimicrob Agents Chemother. 2013; 57(8): 3528–35.https://dx.doi.org/10.1128/AAC.00136-13.


55. Hou X., Healey K.R., Shor E. et al. Novel FKS1 and FKS2 modifications in a high-level echinocandin resistant clinical isolate of Candida glabrata. Emerg Microbes Infect. 2019; 8(1): 1619–25. https://dx.doi.org/10.1080/22221751.2019.1684209.


56. Lewis J.S., 2nd, Wiederhold N.P., Wickes B.L. et al. Rapid emergence of echinocandin resistance in Candida glabrata resulting in clinical and microbiologic failure. Antimicrob Agents Chemother. 2013; 57(9): 4559–61. https://dx.doi.org/10.1128/AAC.01144-13.


57. Bhatt K., Agolli A., Patel M.H. et al. High mortality co-infections of COVID-19 patients: Mucormycosis and other fungal infections. Discoveries. 2021; 9(1): e126. https://dx.doi.org/10.15190/D.2021.5.


58. Chaabane F., Graf A., Jequier L., Coste A.T. Review on antifungal resistance mechanisms in the emerging pathogen Candida auris. Front Microbiol. 2019; 10: 2788. https://dx.doi.org/10.3389/FMICB.2019.02788.


59. Sanguinetti M., Posteraro B., Lass-Florl C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses. 2015; 58(Suppl 2): 2–13. https://dx.doi.org/10.1111/MYC.12330.


60. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции COVID-19». Версия 15 (22.02.2022). Минздрав России. Доступ: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/BMP_COVID-19_V15.pdf (дата обращения – 04.06.2022).


Об авторах / Для корреспонденции


Лаура Зелимхановна Болиева, д.м.н., профессор, зав. кафедрой фармакологии с клинической фармакологией ФГБОУ ВО «Северо-Осетинская государственная медицинская академия» Минздрава России. Адрес: 362019, г. Владикавказ, ул. Пушкинская, д. 40. E-mail: bolievalz@mail.ru. ORCID: https://orcid.org/0000-0002-3763-8994
Андрей Георгиевич Малявин, д.м.н., профессор кафедры фтизиатрии и пульмонологии лечебного факультета ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России. Адрес: 107150, г. Москва, ул. Лосиноостровская, д. 39, стр. 2. E-mail: maliavin@mail.ru.
ORCID: https://orcid.org/0000-0002-6128-5914. Scopus Author ID: 6701876872
Алевтина Ивановна Овсянникова, к.м.н., доцент кафедры фармакологии с клинической фармакологией ФГБОУ ВО «Северо-Осетинская государственная медицинская академия» Минздрава России. Адрес: 362019, г. Владикавказ, ул. Пушкинская, д. 40. E-mail: logitech@mail.ru


Похожие статьи


Бионика Медиа