Asthenic disorders in the context of COVID-19 pandemic


DOI: https://dx.doi.org/10.18565/therapy.2022.9.82-90

Bogolepova A.N., Osinovskaya N.A.

1) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow; 2) Federal Center for Brain and Neurotechnologies of FMBA of Russia, Moscow
Abstract. The most common health problems in COVID-19 survivors include post-infectious asthenia, which can persist for more than 100 days after the respiratory symptoms onset, and cognitive impairments. Most post-COVID patients recover not fully and have a wide range of chronic symptoms that manifest themselves within weeks or months of exposure as neurological, cognitive, or psychiatric disorders. Asthenic syndrome, numerous emotional and cognitive disorders after suffering from COVID-19 reduce the quality of life, slow down the process of recovery and patients’ returning to initial level of daily activities, which requires careful monitoring of patients for the timely detection and correction of such kind of disorders by means of treatment and rehabilitation measures.

Literature


1. World Health Organization (2020). Coronavirus disease 2019 (COVID-19): Situation report, 55. World Health Organization.URL: https://apps.who.int/iris/handle/10665/331479 (date of access – 01.11.2022).


2. Hozhabri H., Sparascio F.S., Sohrabi H. et al. The global emergency of novel coronavirus (SARS-CoV-2): An update of the current status and forecasting. Int J Environ Res Public Health. 2020; 17(16): 5648. https://dx.doi.org/10.3390/ijerph17165648.


3. Yang Y., Peng F., Wang R. et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020; 109: 102434. https://dx.doi.org/10.1016/j.jaut.2020.102434.


4. Al-Samkari H., Leaf R.K., Dzik W.H. et al. COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020; 136(4): 489–500. https://dx.doi.org/10.1182/blood.2020006520.


5. Amraei R., Rahimi N. COVID-19, renin-angiotensin system and endothelial dysfunction. Cells. 2020; 9(7): 1652.https://dx.doi.org/10.3390/cells9071652.


6. Bikdeli B., Madhavan M.V., Jimenez D. et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75(23): 2950–73.https://dx.doi.org/10.1016/j.jacc.2020.04.031.


7. Rogers J.P., Chesney E., Oliver D. et al. Psychiatric and neuropsychiatric pre-sentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020; 7(7): 611–27.https://dx.doi.org/10.1016/S2215-0366(20)30203-0.


8. Goldberg J.F. Psychiatry’s niche role in the COVIDE19 pandemic. J Clin Psychiatry. 2020; 81(3): 20com13363. https://dx.doi.org/10.4088/JCP.20com13363.


9. Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020; 92(6): 552–55. https://dx.doi.org/10.1002/jmv.25728.


10. Yao H., Chen J.H., Xu Y.F. Patients with mental health disorders in the COVID-19 epidemic. Lancet Psychiatry. 2020; 7(4): e21.https://dx.doi.org/10.1016/S2215-0366(20)30090-0.


11. Медведев В.Э., Доготарь О.А. COVID-19 и психическое здоровье: вызовы и первые выводы. Неврология, нейропсихиатрия, психосоматика. 2020; 12(6): 4–10. [Medvedev V.E., Dogotar O.A. COVID-19 and mental health: challenges and first conclusions. Nevrologiya, neyropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2020; 12(6): 4–10 (In Russ.)].https://dx.doi.org/10.14412/2074-2711-2020-6-4-10. EDN: HRSLLP.


12. Brooks S.K., Webster R.K., Smith L.E. et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet. 2020; 395(10227): 912–20. https://dx.doi.org/10.1016/S0140-6736(20)30460-8.


13. Qiu J., Shen B., Zhao M. et al. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen Psychiatr. 2020; 33(2): e100213. https://dx.doi.org/10.1136/gpsych-2020-100213 [published correction appears in https://dx.doi.org/10.1136/gpsych-2020-100213corr1].


14. Figueroa C.A., Aguilera A. The need for a mental health technology revolution in the COVID-19 pandemic. Front Psychiatry. 2020; 11: 523. https://dx.doi.org/10.3389/fpsyt.2020.00523.


15. Ozamiz-Etxebarria N., Dosil-Santamaria M., Picaza-Gorrochategui M. et al. Stress, anxiety, and depression levels in the initial stage of the COVID-19 outbreak in a population sample in the northern Spain. Cad Saude Publica. 2020; 36(4): e00054020.https://dx.doi.org/10.1590/0102-311X00054020.


16. Panchal N. Kamal R., Cox C., Garfield R. The implications of COVID-19 for mental health and substance use. 2021.URL: https://www.kff.org/coronavirus-covid-19/issue-brief/the-implications-of-covid-19-for-mental-health-and-substance-use/ (date of access – 01.11.2022).


17. Mehta P., McAuley D.F., Brown M. et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033–34. https://dx.doi.org/10.1016/S0140-6736(20)30628-0.


18. Garg P., Arora U., Kumar A., Wig N. The «post-COVID» syndrome: How deep is the damage? J Med Virol. 2021; 93(2): 673–74.https://dx.doi.org/10.1002/jmv.26465.


19. Callard F., Perego E. How and why patients made Long Covid. Soc Sci Med. 2021; 268: 113426.https://dx.doi.org/10.1016/j.socscimed.2020.113426.


20. Greenhalgh T., Knight M., A’Court C. et al. Management of post-acute covid-19 in primary care. BMJ. 2020; 370: m3026.https://dx.doi.org/10.1136/bmj.m3026.


21. Lopez-Leon S., Wegman-Ostrosky T., Perelman C. et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv. 2021: 2021.01.27.21250617. https://dx.doi.org/10.1101/2021.01.27.21250617. Preprint.


22. Townsend L., Dowds J., O’Brien K. et al. Persistent poor health post-COVID-19 is not associated with respiratory complications or initial disease severity. Ann Am Thorac Soc. 2021; 18(6): 997–1003. https://dx.doi.org/10.1513/AnnalsATS.202009-1175OC.


23. Townsend L., Dyer A.H., Jones K. et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020; 15(11): e0240784. https://dx.doi.org/10.1371/journal.pone.0240784.


24. Боголепова А.Н., Осиновская Н.А., Коваленко Е.А., Махнович Е.В. Возможные подходы к терапии астенических и когнитивных нарушений при постковидном синдроме. Неврология, нейропсихиатрия, психосоматика. 2021; 13(4): 88–93. [Bogolepova A.N., Osinovskaya N.A., Kovalenko E.A., Makhnovich E.V. Fatigue and cognitive impairment in post-COVID syndrome: Possible treatment approaches. Nevrologiya, neyropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2021; 13(4): 88–93 (In Russ.)]. https://dx.doi.org/10.14412/2074-2711-2021-4-88-93. EDN: XRXGTR.


25. Ahorsu D.K., Lin C.Y., Pakpour A.H. The association between health status and insomnia, mental health, and preventive behaviors: The mediating role of fear of COVID-19. Gerontol Geriatr Med. 2020; 6: 2333721420966081. https://dx.doi.org/10.1177/2333721420966081


26. Choi E.H., Hui B.H., Wan E.F. Depression and anxiety in Hong Kong during COVID-19. Int J Environ Res Public Health. 2020; 17(10): 3740. https://dx.doi.org/10.3390/ijerph17103740.


27. Dong L., Bouey J. Public mental health crisis during COVID-19 pandemic, China. Emerg Infect Dis. 2020; 26(7): 1616–18.https://dx.doi.org/10.3201/eid2607.200407.


28. Pappa S., Ntella V., Giannakas T. et al. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain Behav Immun. 2020; 88: 901–7.https://dx.doi.org/10.1016/j.bbi.2020.05.026.


29. Stanton R., To Q.G., Khalesi S. et al. Depression, anxiety and stress during COVID-19: Associations with changes in physical activity, sleep, tobacco and alcohol use in australian adults. Int J Environ Res Public Health. 2020; 17(11): 4065.https://dx.doi.org/10.3390/ijerph17114065.


30. Stein M.B. COVID-19 and anxiety and depression in 2020. Depress Anxiety. 2020; 37(4): 302. https://dx.doi.org/10.1002/da.22870.


31. Yang Y., Li W., Zhang Q. et al. Mental health services for older adults in China during the COVID-19 outbreak. Lancet Psychiatry. 2020; 7(4): e19. https://dx.doi.org/10.1016/s2215-0366(20)30079-1.


32. Lee S.A., Jobe M.C., Mathis A.A. et al. Incremental validity of coronaphobia: Coronavirus anxiety explains depression, generalized anxiety, and death anxiety. J Anxiety Disord. 2020; 74: 102268. https://dx.doi.org/10.1016/j.janxdis.2020.102268.


33. Ozdin S., Ozdin S.B. Levels and predictors of anxiety, depression and health anxiety during COVID-19 pandemic in Turkish society: The importance of gender. Int J Soc Psychiatry. 2020; 66(5): 504–11. https://dx.doi.org/10.1177/0020764020927051.


34. Chana-Cuevas P., Salles-Gandara P., Rojas-Fernandez A. et al. The potential role of SARS-CoV-2 in the pathogenesis of Parkinson’s disease. Front Neurol. 2020; 11: 1044. https://dx.doi.org/10.3389/fneur.2020.01044.


35. Nanda S., Handa R., Prasad A. et al. Covid-19 associated Guillain–Barre syndrome: Contrasting tale of four patients from a tertiary care centre in India. Am J Emerg Med. 2021; 39: 125–28. https://dx.doi.org/10.1016/j.ajem.2020.09.029.


36. Зинчук А.Н., Зубач Е.А., Орфин А.Я., Плевачук О.Ю. Астенический синдром и его коррекция у пациентов с инфекционной патологией. Семейная медицина. 2019; 4: 41–46. [Zinchuk A.N., Zubach E.A., Orfin A.Ya., Plevachuk O.Yu. Asthenic syndrome and its correction in patients with infectious pathology. Semeynaya meditsina = Family Medicine. 2019; 4: 41–46 (In Russ.)]. EDN: EFDVYA.


37. Масленникова Н.А., Тихонова Е.П., Михайлова Л.А. Клинические аспекты проявления эхинококкоза печени. Современные проблемы науки и образования. 2018; 5: 22. [Maslennikova N.A., Tikhonova E.P., Mikhailova L.A. Clinical aspects of liver echinococcosis. Sovremennyye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2018; 5: 22 (In Russ.)]. EDN: XXZIJR.


38. Abbot N.C., Spence V. Chronic fatigue syndrome. Lancet. 2006; 67(9522): 1574; author reply 1575.https://dx.doi.org/10.1016/S0140-6736(06)68688-1.


39. Котова О.В., Акарачкова Е.С. Астенический синдром в практике невролога и семейного врача. РМЖ. 2016; 24(13): 824–829. [Kotova O.V., Akarachkova E.S. Asthenic syndrome in the practice of a neurologist and family doctor. Russkiy meditsinskiy zhurnal = Russian Medical Journal. 2016; 24(13): 824–829 (In Russ.)]. EDN: WICZWF.


40. Дюкова Г.М. Астенический синдром: проблемы диагностики и терапии. Эффективная фармакотерапия. 2012; 1: 40–45. [Dyukova G.M. Asthenic syndrome: Problems of diagnosis and therapy. Effektivnaya farmakoterapiya = Effective Pharmacotherapy. 2012; 1: 40–45 (In Russ.)]. EDN: SLUCTJ.


41. Повереннова И.Е., Золотовская И.А., Безгина Е.В. Диагностика и лечение астенического синдрома у лиц пожилого возраста, перенесших ОРВИ. Журнал неврологии и психиатрии им. С.С. Корсакова. 2014; 114(9): 73–76. [Poverennova I.E., Zolotovskaya I.A., Bezgina E.V. Diagnostics and treatment of asthenic syndrome in elderly people with acute respiratory viral infections. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2014; 114(9): 73–76 (In Russ.)]. EDN: SXTBPX.


42. Hickie I., Davenport T., Wakefield D. et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: Prospective cohort study. BMJ. 2006; 333(7568): 575. https://dx.doi.org/10.1136/bmj.38933.585764.AE.


43. Preedy V.R., Smith D.G., Salisbury J.R. et al. Biochemical and muscle studies in patients with acute onset post-viral fatigue syndrome. J Clin Pathol. 1993; 46(8): 722–26. https://dx.doi.org/10.1136/jcp.46.8.722.


44. Carruthers B.M., Jain A.K., De Meirleir K.L. et al. Myalgic encephalomyelitis/chronic fatigue syndrome: Clinical working case definition, diagnostic and treatment protocols. Journal of Chronic Fatigue Syndrome. 2003; 11(1): 7–115.https://dx.doi.org/10.1300/J092v11n01_02.


45. Fukuda K., Straus S.E., Hickie I. et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International chronic fatigue syndrome study group. Ann Intern Med. 1994; 121(12): 953–59.https://dx.doi.org/10.7326/0003-4819-121-12-199412150-00009.


46. Воробьева Ю.Д., Дюкова Г.М. Астенический синдром в контексте пандемии COVID 19. Медицинский алфавит. 2020; 33: 26–34. [Vorobyova Yu.D., Diukova G.M. Asthenic syndrome in context of COVID-19 pandemic. Meditsinskiy alfavit = Medical Alphabet. 2020; 33: 26–34 (In Russ.)]. https://dx.doi.org/10.33667/2078-5631-2020-33-26-34. EDN: UYDUQZ.


47. Sasannejad C., Ely E.W., Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: A review of clinical impact and pathophysiological mechanisms. Crit Care. 2019; 23(1): 352. https://dx.doi.org/10.1186/s13054-019-2626-z.


48. Sykes D.L., Holdsworth L., Jawad N. et al. Post-COVID-19 symptom burden: What is Long-COVID and how should we manage it? Lung. 2021; 199(2): 113–19. https://dx.doi.org/10.1007/s00408-021-00423-z.


49. Rauch B., Kern-Matschilles S., Haschka S.J. et al. COVID-19-related symptoms 6 months after the infection – Update on a prospective cohort study in Germany. MedRxiv. 2021: 10.1101/2021. 02.12.21251619. https://dx.doi.org/10.1101/2021.02.12.21251619. Preprint.


50. Zhou H., Lu S., Chen J. et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020; 129: 98–102. https://dx.doi.org/10.1016/j.jpsychires.2020.06.022.


51. Jacomy H., Fragoso G., Almazan G., et al. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. 2006; 349(2): 335–46. https://dx.doi.org/10.1016/j.virol. 2006.01.049.


52. Arbi Y.M., Harthi A., Hussein J. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection. 2015; 43(4): 495–501. https://dx.doi.org/10.1007/s15010-015-0720-y.


53. Мартынов М.Ю., Боголепова А.Н., Ясаманова А.Н. Эндотелиальная дисфункция при COVID-19 и когнитивные нарушения. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021; 121(6): 93–99. [Martynov M.Yu, Bogolepova A.N., Yasamanova A.N. Endothelial dysfunction in COVID- 19 and cognitive impairment. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2021; 121(6): 93–99 (In Russ.)]. https://dx.doi.org/10.17116/jnevro202112106193. EDN: IRHFWS.


54. Egbert A.R., Cankurtaran S., Karpiak S. Brain abnormalities in COVID-19 acute/subacute phase: A rapid systematic review. Brain Behav Immun. 2020; 89: 543–54. https://dx.doi.org/10.1016/j.bbi.2020.07.014.


55. Delorme C., Paccoud O., Kas A. et al. Covid-19 related encephalopathy: A case series with brain FDG-PET/CT findings. Eur J Neurol. 2020; 27(12): 2651–57. https://dx.doi.org/10.1111/ene.14478.


56. Evans P.C., Rainger G.E., Mason J.C. et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020; 116(14): 2177–84. https://dx.doi.org/10.1093/cvr/cvaa230.


57. Panju A.H., Danesh A., Minden M.D. et al. Relationship between fatigue and cytokine levels in patients age 50+ with acute myeloid leukemia (AML). Blood. 2006; 108(11): 4507. https://doi.org/10.1182/blood. V108.11.4507.4507.


58. Bower J.E. Cancer-related fatigue–mechanisms, risk factors, and treatments. Nat Rev Clin Oncol. 2014; 11(10): 597–609.https://dx.doi.org/10.1038/nrclinonc.2014.127.


59. Zielinski M.R., Systrom D.M., Rose N.R. Fatigue, sleep, and autoimmune and related disorders. Front Immunol. 2019; 10: 1827. https://dx.doi.org/10.3389/fimmu.2019.01827.


60. Zhang J.M., An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007; 45(2): 27–37.https://dx.doi.org/10.1097/AIA.0b013e318034194e.


61. Neri S., Pistone G., Saraceno B. et al. L-carnitine decreases severity and type of fatigue induced by interferon-alpha in the treatment of patients with hepatitis C. Neuropsychobiology. 2003; 47(2): 94–97. https://dx.doi.org/10.1159/000070016.


62. Yamato M., Kataoka Y. Fatigue sensation following peripheral viral infection is triggered by neuroinflammation: Who will answer these questions? Neural Regen Res. 2015; 10(2): 203–4. https://dx.doi.org/10.4103/1673–5374.152369.


63. Lorusso L., Mikhaylova S.V., Capelli E. et al. Immunological aspects of chronic fatigue syndrome. Autoimmun Rev. 2009; 8(4): 287–91. https://dx.doi.org/10.1016/j.autrev.2008.08.003.


64. Filler K., Lyon D., Bennett J. et al. Association of mitochondrial dysfunction and fatigue: A review of the literature. BBA Clin. 2014; 1: 12–23. https://dx.doi.org/10.1016/j.bbacli.2014.04.001


65. Smits B., van den Heuvel L., Knoop H. et al. Mitochondrial enzymes discriminate between mitochondrial disorders and chronic fatigue syndrome. Mitochondrion. 2011; 11(5): 735–38. https://dx.doi.org/10.1016/j.mito.2011.05.005.


66. Chen R., Liang F.X., Moriya J. et al. Chronic fatigue syndrome and the central nervous system. J Int Med Res. 2008; 36(5): 867–74. https://dx.doi.org/10.1177/147323000803600501.


67. Kedor C., Freitag H., Meyer-Arndt L. et al. Chronic COVID-19 Syndrome and Chronic Fatigue Syndrome (ME/CFS) following the first pandemic wave in Germany – a first analysis of a prospective observational study. Nat Commun. 2022; 13: 5104.https://dx.doi.org/10.1038/s41467-022-32507-6.


68. Davis H.E., Assaf G.S., McCorkell L. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021; 38: 101019. https://dx.doi.org/10.1016/j.eclinm.2021.101019.


69. Lewis G., Wessely S. The epidemiology of fatigue: more questions than answers. J Epidemiol Community Health. 1992; 46(2): 92–97. https://dx.doi.org/10.1136/jech.46.2.92.


70. Young B.E., Ong S.W.X., Kalimuddin S. et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020; 323(15): 1488–94. https://dx.doi.org/10.1001/jama.2020.3204 [published correction appears inhttps://dx.doi.org/10.1001/jama.2020.4372].


71. Klok F.A., Boon G.J.A.M., Barco S. et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J. 2020; 56(1): 2001494. https://dx.doi.org/10.1183/13993003.01494-2020.


72. Kamdar B.B., King L.M., Collop N.A. et al. The effect of a quality improvement intervention on perceived sleep quality and cognition in a medical ICU. Crit Care Med. 2013; 41(3): 800–9. https://dx.doi.org/10.1097/CCM.0b013e3182746442.


73. Finsterer J., Mahjoub S.Z. Fatigue in healthy and diseased individuals. Am J Hosp. Palliat Care. 2014; 31(5): 562–75.https://dx.doi.org/10.1177/10499091134947480.


74. Barazzoni R., Bischoff S.C., Breda J. et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020; 39(6): 1631–38. https://dx.doi.org/10.1016/j.clnu.2020.03.022.


About the Autors


Anna N. Bogolepova, Dr. med. habil., professor of the Department of neurology, neurosurgery and medical genetics, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova Str. E-mail: annabogolepova@yandex.ru.
ORCID: https://orcid.org/0000-0002-6327-3546
Nina A. Osinovskaya, researcher at the Department of cognitive impairments, Federal Center for Brain and Neurotechnologies of FMBA of Russia. Address: 117513, Moscow, 1/10 Ostrovityanova Str. E-mail: 4246290@mail.ru. ORCID: https://orcid.org/0000-0003-2313-571X


Similar Articles


Бионика Медиа