Астенические расстройства в контексте пандемии COVID-19


DOI: https://dx.doi.org/10.18565/therapy.2022.9.82-90

А.Н. Боголепова, Н.А. Осиновская

1) ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, г. Москва; 2) ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России, г. Москва
Аннотация. К числу наиболее частых нарушений здоровья у пациентов, перенесших COVID-19, относятся постинфекционная астения, которая может персистировать в течение более 100 дней после начала респираторных симптомов, и когнитивные расстройства. Большинство постковидных пациентов выздоравливает не полностью и имеет широкий спектр хронических симптомов, проявляющихся в течение нескольких недель или месяцев после заражения в виде нарушений неврологического, когнитивного или психиатрического характера. Астенический синдром, многочисленные эмоциональные и когнитивные расстройства после перенесенного COVID-19 снижают качество жизни, замедляют процесс восстановления и возвращения пациентов к исходному уровню повседневной активности, что требует тщательного наблюдения за пациентами для своевременного выявления и коррекции этих нарушений с помощью лечебно-реабилитационных мер.

Литература


1. World Health Organization (2020). Coronavirus disease 2019 (COVID-19): Situation report, 55. World Health Organization.URL: https://apps.who.int/iris/handle/10665/331479 (date of access – 01.11.2022).


2. Hozhabri H., Sparascio F.S., Sohrabi H. et al. The global emergency of novel coronavirus (SARS-CoV-2): An update of the current status and forecasting. Int J Environ Res Public Health. 2020; 17(16): 5648. https://dx.doi.org/10.3390/ijerph17165648.


3. Yang Y., Peng F., Wang R. et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020; 109: 102434. https://dx.doi.org/10.1016/j.jaut.2020.102434.


4. Al-Samkari H., Leaf R.K., Dzik W.H. et al. COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020; 136(4): 489–500. https://dx.doi.org/10.1182/blood.2020006520.


5. Amraei R., Rahimi N. COVID-19, renin-angiotensin system and endothelial dysfunction. Cells. 2020; 9(7): 1652.https://dx.doi.org/10.3390/cells9071652.


6. Bikdeli B., Madhavan M.V., Jimenez D. et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75(23): 2950–73.https://dx.doi.org/10.1016/j.jacc.2020.04.031.


7. Rogers J.P., Chesney E., Oliver D. et al. Psychiatric and neuropsychiatric pre-sentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020; 7(7): 611–27.https://dx.doi.org/10.1016/S2215-0366(20)30203-0.


8. Goldberg J.F. Psychiatry’s niche role in the COVIDE19 pandemic. J Clin Psychiatry. 2020; 81(3): 20com13363. https://dx.doi.org/10.4088/JCP.20com13363.


9. Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020; 92(6): 552–55. https://dx.doi.org/10.1002/jmv.25728.


10. Yao H., Chen J.H., Xu Y.F. Patients with mental health disorders in the COVID-19 epidemic. Lancet Psychiatry. 2020; 7(4): e21.https://dx.doi.org/10.1016/S2215-0366(20)30090-0.


11. Медведев В.Э., Доготарь О.А. COVID-19 и психическое здоровье: вызовы и первые выводы. Неврология, нейропсихиатрия, психосоматика. 2020; 12(6): 4–10.


12. Brooks S.K., Webster R.K., Smith L.E. et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet. 2020; 395(10227): 912–20. https://dx.doi.org/10.1016/S0140-6736(20)30460-8.


13. Qiu J., Shen B., Zhao M. et al. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen Psychiatr. 2020; 33(2): e100213. https://dx.doi.org/10.1136/gpsych-2020-100213


14. Figueroa C.A., Aguilera A. The need for a mental health technology revolution in the COVID-19 pandemic. Front Psychiatry. 2020; 11: 523. https://dx.doi.org/10.3389/fpsyt.2020.00523.


15. Ozamiz-Etxebarria N., Dosil-Santamaria M., Picaza-Gorrochategui M. et al. Stress, anxiety, and depression levels in the initial stage of the COVID-19 outbreak in a population sample in the northern Spain. Cad Saude Publica. 2020; 36(4): e00054020.https://dx.doi.org/10.1590/0102-311X00054020.


16. Panchal N. Kamal R., Cox C., Garfield R. The implications of COVID-19 for mental health and substance use. 2021.URL: https://www.kff.org/coronavirus-covid-19/issue-brief/the-implications-of-covid-19-for-mental-health-and-substance-use/ (date of access – 01.11.2022).


17. Mehta P., McAuley D.F., Brown M. et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033–34. https://dx.doi.org/10.1016/S0140-6736(20)30628-0.


18. Garg P., Arora U., Kumar A., Wig N. The «post-COVID» syndrome: How deep is the damage? J Med Virol. 2021; 93(2): 673–74.https://dx.doi.org/10.1002/jmv.26465.


19. Callard F., Perego E. How and why patients made Long Covid. Soc Sci Med. 2021; 268: 113426.https://dx.doi.org/10.1016/j.socscimed.2020.113426.


20. Greenhalgh T., Knight M., A’Court C. et al. Management of post-acute covid-19 in primary care. BMJ. 2020; 370: m3026.https://dx.doi.org/10.1136/bmj.m3026.


21. Lopez-Leon S., Wegman-Ostrosky T., Perelman C. et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv. 2021: 2021.01.27.21250617. https://dx.doi.org/10.1101/2021.01.27.21250617. Preprint.


22. Townsend L., Dowds J., O’Brien K. et al. Persistent poor health post-COVID-19 is not associated with respiratory complications or initial disease severity. Ann Am Thorac Soc. 2021; 18(6): 997–1003. https://dx.doi.org/10.1513/AnnalsATS.202009-1175OC.


23. Townsend L., Dyer A.H., Jones K. et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020; 15(11): e0240784. https://dx.doi.org/10.1371/journal.pone.0240784.


24. Боголепова А.Н., Осиновская Н.А., Коваленко Е.А., Махнович Е.В. Возможные подходы к терапии астенических и когнитивных нарушений при постковидном синдроме. Неврология, нейропсихиатрия, психосоматика. 2021; 13(4): 88–93.


25. Ahorsu D.K., Lin C.Y., Pakpour A.H. The association between health status and insomnia, mental health, and preventive behaviors: The mediating role of fear of COVID-19. Gerontol Geriatr Med. 2020; 6: 2333721420966081. https://dx.doi.org/10.1177/2333721420966081


26. Choi E.H., Hui B.H., Wan E.F. Depression and anxiety in Hong Kong during COVID-19. Int J Environ Res Public Health. 2020; 17(10): 3740. https://dx.doi.org/10.3390/ijerph17103740.


27. Dong L., Bouey J. Public mental health crisis during COVID-19 pandemic, China. Emerg Infect Dis. 2020; 26(7): 1616–18.https://dx.doi.org/10.3201/eid2607.200407.


28. Pappa S., Ntella V., Giannakas T. et al. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain Behav Immun. 2020; 88: 901–7.https://dx.doi.org/10.1016/j.bbi.2020.05.026.


29. Stanton R., To Q.G., Khalesi S. et al. Depression, anxiety and stress during COVID-19: Associations with changes in physical activity, sleep, tobacco and alcohol use in australian adults. Int J Environ Res Public Health. 2020; 17(11): 4065.https://dx.doi.org/10.3390/ijerph17114065.


30. Stein M.B. COVID-19 and anxiety and depression in 2020. Depress Anxiety. 2020; 37(4): 302. https://dx.doi.org/10.1002/da.22870.


31. Yang Y., Li W., Zhang Q. et al. Mental health services for older adults in China during the COVID-19 outbreak. Lancet Psychiatry. 2020; 7(4): e19. https://dx.doi.org/10.1016/s2215-0366(20)30079-1.


32. Lee S.A., Jobe M.C., Mathis A.A. et al. Incremental validity of coronaphobia: Coronavirus anxiety explains depression, generalized anxiety, and death anxiety. J Anxiety Disord. 2020; 74: 102268. https://dx.doi.org/10.1016/j.janxdis.2020.102268.


33. Ozdin S., Ozdin S.B. Levels and predictors of anxiety, depression and health anxiety during COVID-19 pandemic in Turkish society: The importance of gender. Int J Soc Psychiatry. 2020; 66(5): 504–11. https://dx.doi.org/10.1177/0020764020927051.


34. Chana-Cuevas P., Salles-Gandara P., Rojas-Fernandez A. et al. The potential role of SARS-CoV-2 in the pathogenesis of Parkinson’s disease. Front Neurol. 2020; 11: 1044. https://dx.doi.org/10.3389/fneur.2020.01044.


35. Nanda S., Handa R., Prasad A. et al. Covid-19 associated Guillain–Barre syndrome: Contrasting tale of four patients from a tertiary care centre in India. Am J Emerg Med. 2021; 39: 125–28. https://dx.doi.org/10.1016/j.ajem.2020.09.029.


36. Зинчук А.Н., Зубач Е.А., Орфин А.Я., Плевачук О.Ю. Астенический синдром и его коррекция у пациентов с инфекционной патологией. Семейная медицина. 2019; 4: 41–46.


37. Масленникова Н.А., Тихонова Е.П., Михайлова Л.А. Клинические аспекты проявления эхинококкоза печени. Современные проблемы науки и образования. 2018; 5: 22.


38. Abbot N.C., Spence V. Chronic fatigue syndrome. Lancet. 2006; 67(9522): 1574; author reply 1575.https://dx.doi.org/10.1016/S0140-6736(06)68688-1.


39. Котова О.В., Акарачкова Е.С. Астенический синдром в практике невролога и семейного врача. РМЖ. 2016; 24(13): 824–829.


40. Дюкова Г.М. Астенический синдром: проблемы диагностики и терапии. Эффективная фармакотерапия. 2012; 1: 40–45.


41. Повереннова И.Е., Золотовская И.А., Безгина Е.В. Диагностика и лечение астенического синдрома у лиц пожилого возраста, перенесших ОРВИ. Журнал неврологии и психиатрии им. С.С. Корсакова. 2014; 114(9): 73–76.


42. Hickie I., Davenport T., Wakefield D. et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: Prospective cohort study. BMJ. 2006; 333(7568): 575. https://dx.doi.org/10.1136/bmj.38933.585764.AE.


43. Preedy V.R., Smith D.G., Salisbury J.R. et al. Biochemical and muscle studies in patients with acute onset post-viral fatigue syndrome. J Clin Pathol. 1993; 46(8): 722–26. https://dx.doi.org/10.1136/jcp.46.8.722.


44. Carruthers B.M., Jain A.K., De Meirleir K.L. et al. Myalgic encephalomyelitis/chronic fatigue syndrome: Clinical working case definition, diagnostic and treatment protocols. Journal of Chronic Fatigue Syndrome. 2003; 11(1): 7–115.https://dx.doi.org/10.1300/J092v11n01_02.


45. Fukuda K., Straus S.E., Hickie I. et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International chronic fatigue syndrome study group. Ann Intern Med. 1994; 121(12): 953–59.https://dx.doi.org/10.7326/0003-4819-121-12-199412150-00009.


46. Воробьева Ю.Д., Дюкова Г.М. Астенический синдром в контексте пандемии COVID 19. Медицинский алфавит. 2020; 33: 26–34.


47. Sasannejad C., Ely E.W., Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: A review of clinical impact and pathophysiological mechanisms. Crit Care. 2019; 23(1): 352. https://dx.doi.org/10.1186/s13054-019-2626-z.


48. Sykes D.L., Holdsworth L., Jawad N. et al. Post-COVID-19 symptom burden: What is Long-COVID and how should we manage it? Lung. 2021; 199(2): 113–19. https://dx.doi.org/10.1007/s00408-021-00423-z.


49. Rauch B., Kern-Matschilles S., Haschka S.J. et al. COVID-19-related symptoms 6 months after the infection – Update on a prospective cohort study in Germany. MedRxiv. 2021: 10.1101/2021. 02.12.21251619. https://dx.doi.org/10.1101/2021.02.12.21251619. Preprint.


50. Zhou H., Lu S., Chen J. et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020; 129: 98–102. https://dx.doi.org/10.1016/j.jpsychires.2020.06.022.


51. Jacomy H., Fragoso G., Almazan G., et al. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. 2006; 349(2): 335–46. https://dx.doi.org/10.1016/j.virol. 2006.01.049.


52. Arbi Y.M., Harthi A., Hussein J. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection. 2015; 43(4): 495–501. https://dx.doi.org/10.1007/s15010-015-0720-y.


53. Мартынов М.Ю., Боголепова А.Н., Ясаманова А.Н. Эндотелиальная дисфункция при COVID-19 и когнитивные нарушения. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021; 121(6): 93–99.


54. Egbert A.R., Cankurtaran S., Karpiak S. Brain abnormalities in COVID-19 acute/subacute phase: A rapid systematic review. Brain Behav Immun. 2020; 89: 543–54. https://dx.doi.org/10.1016/j.bbi.2020.07.014.


55. Delorme C., Paccoud O., Kas A. et al. Covid-19 related encephalopathy: A case series with brain FDG-PET/CT findings. Eur J Neurol. 2020; 27(12): 2651–57. https://dx.doi.org/10.1111/ene.14478.


56. Evans P.C., Rainger G.E., Mason J.C. et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020; 116(14): 2177–84. https://dx.doi.org/10.1093/cvr/cvaa230.


57. Panju A.H., Danesh A., Minden M.D. et al. Relationship between fatigue and cytokine levels in patients age 50+ with acute myeloid leukemia (AML). Blood. 2006; 108(11): 4507. https://doi.org/10.1182/blood. V108.11.4507.4507.


58. Bower J.E. Cancer-related fatigue–mechanisms, risk factors, and treatments. Nat Rev Clin Oncol. 2014; 11(10): 597–609.https://dx.doi.org/10.1038/nrclinonc.2014.127.


59. Zielinski M.R., Systrom D.M., Rose N.R. Fatigue, sleep, and autoimmune and related disorders. Front Immunol. 2019; 10: 1827. https://dx.doi.org/10.3389/fimmu.2019.01827.


60. Zhang J.M., An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007; 45(2): 27–37.https://dx.doi.org/10.1097/AIA.0b013e318034194e.


61. Neri S., Pistone G., Saraceno B. et al. L-carnitine decreases severity and type of fatigue induced by interferon-alpha in the treatment of patients with hepatitis C. Neuropsychobiology. 2003; 47(2): 94–97. https://dx.doi.org/10.1159/000070016.


62. Yamato M., Kataoka Y. Fatigue sensation following peripheral viral infection is triggered by neuroinflammation: Who will answer these questions? Neural Regen Res. 2015; 10(2): 203–4. https://dx.doi.org/10.4103/1673–5374.152369.


63. Lorusso L., Mikhaylova S.V., Capelli E. et al. Immunological aspects of chronic fatigue syndrome. Autoimmun Rev. 2009; 8(4): 287–91. https://dx.doi.org/10.1016/j.autrev.2008.08.003.


64. Filler K., Lyon D., Bennett J. et al. Association of mitochondrial dysfunction and fatigue: A review of the literature. BBA Clin. 2014; 1: 12–23. https://dx.doi.org/10.1016/j.bbacli.2014.04.001


65. Smits B., van den Heuvel L., Knoop H. et al. Mitochondrial enzymes discriminate between mitochondrial disorders and chronic fatigue syndrome. Mitochondrion. 2011; 11(5): 735–38. https://dx.doi.org/10.1016/j.mito.2011.05.005.


66. Chen R., Liang F.X., Moriya J. et al. Chronic fatigue syndrome and the central nervous system. J Int Med Res. 2008; 36(5): 867–74. https://dx.doi.org/10.1177/147323000803600501.


67. Kedor C., Freitag H., Meyer-Arndt L. et al. Chronic COVID-19 Syndrome and Chronic Fatigue Syndrome (ME/CFS) following the first pandemic wave in Germany – a first analysis of a prospective observational study. Nat Commun. 2022; 13: 5104.https://dx.doi.org/10.1038/s41467-022-32507-6.


68. Davis H.E., Assaf G.S., McCorkell L. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021; 38: 101019. https://dx.doi.org/10.1016/j.eclinm.2021.101019.


69. Lewis G., Wessely S. The epidemiology of fatigue: more questions than answers. J Epidemiol Community Health. 1992; 46(2): 92–97. https://dx.doi.org/10.1136/jech.46.2.92.


70. Young B.E., Ong S.W.X., Kalimuddin S. et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020; 323(15): 1488–94. https://dx.doi.org/10.1001/jama.2020.3204


71. Klok F.A., Boon G.J.A.M., Barco S. et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J. 2020; 56(1): 2001494. https://dx.doi.org/10.1183/13993003.01494-2020.


72. Kamdar B.B., King L.M., Collop N.A. et al. The effect of a quality improvement intervention on perceived sleep quality and cognition in a medical ICU. Crit Care Med. 2013; 41(3): 800–9. https://dx.doi.org/10.1097/CCM.0b013e3182746442.


73. Finsterer J., Mahjoub S.Z. Fatigue in healthy and diseased individuals. Am J Hosp. Palliat Care. 2014; 31(5): 562–75.https://dx.doi.org/10.1177/10499091134947480.


74. Barazzoni R., Bischoff S.C., Breda J. et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020; 39(6): 1631–38. https://dx.doi.org/10.1016/j.clnu.2020.03.022.


Об авторах / Для корреспонденции


Анна Николаевна Боголепова, д.м.н., профессор кафедры неврологии, нейрохирургии и медицинской генетики ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России. Адрес: 117997, г. Москва, ул. Островитянова, д. 1. E-mail: annabogolepova@yandex.ru. ORCID: https://orcid.org/0000-0002-6327-3546
Нина Алексеевна Осиновская, научный сотрудник отдела когнитивных нарушений ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России. Адрес: 117513, г. Москва, ул. Островитянова, д. 1, стр. 10. E-mail: 4246290@mail.ru. ORCID: https://orcid.org/0000-0003-2313-571X


Похожие статьи


Бионика Медиа