DOI: https://dx.doi.org/10.18565/therapy.2024.7.43-49
Л.И. Кадников, Н.В. Изможерова, А.А. Попов, И.П. Антропова
1) ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России, г. Екатеринбург; 2) ФГБУН «Институт высокотемпературной электрохимии» Уральского отделения РАН, г. Екатеринбург
1. Канаева Т.В., Кароли Н.А. Прогностические маркеры поражения сердечно-сосудистой системы у пациентов с COVID-19: обзор литературы. Сеченовский вестник. 2022; 13(3): 14–23. (Kanaeva T.V., Karoli N.A. Prognostic biomarkers for cardiovascular injury in patients with COVID-19: A review. Sechenovskiy vestnik = Sechenov Medical Journal. 2022; 13(3): 14–23 (In Russ.)). https://doi.org/10.47093/2218-7332.2022.13.3.14-23. EDN: BZQEIF. 2. McFadyen J.D., Stevens H., Peter K. The emerging threat of (micro)thrombosis in COVID-19 and its therapeutic implications. Circ Res. 2020; 127(4): 571–87. https://doi.org/10.1161/circresaha.120.317447. PMID: 32586214. PMCID: PMC7386875. 3. Bonaventura A., Vecchié A., Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021; 21(5): 319–29. https://doi.org/10.1038/s41577-021-00536-9. PMID: 33824483. PMCID: PMC8023349. 4. Нестерова И.В., Атажахова М.Г., Тетерин Ю.В. с соавт. Роль нейтрофильных экстрацеллюлярных сетей (NETs) в иммунопатогенезе тяжелого COVID-19: потенциальные иммунотерапевтические стратегии, регулирующие процесс формирования и активность NETs. Инфекция и иммунитет. 2023; 13(1): 9–28. (Nesterova I.V., Atazhakhova M.G., Teterin Yu.V. et al. The role of neutrophil extracellular traps (NETs) in the immunopathogenesis of severe COVID-19: Potential immunotherapeutic strategies regulating NET formation and activity. Infektsiya i immunitet = Russian Journal of Infection and Immunity. 2023; 13(1): 9–28 (In Russ.)). https://doi.org/10.15789/2220-7619-TRO-2058. EDN: VLVURO. 5. Wulandari S., Hartono, Wibawa T. The role of HMGB1 in COVID-19-induced cytokine storm and its potential therapeutic targets: A review. Immunology. 2023; 169(2): 117–31. https://doi.org/10.1111/imm.13623. PMID: 36571562. PMCID: PMC9880760. 6. Martinod K., Deppermann C. Immunothrombosis and thromboinflammation in host defense and disease. Platelets. 2021; 32(3): 314–24. https://doi.org/10.1080/09537104.2020.1817360. PMID: 32896192. 7. Ghoshal K., Bhattacharyya M. Overview of platelet physiology: Its hemostatic and nonhemostatic role in disease pathogenesis. Scientific World Journal. 2014; 2014: 781857. https://doi.org/10.1155/2014/781857. PMID: 24729754. PMCID: PMC3960550. 8. Manne B.K., Xiang S.C., Rondina M.T. Platelet secretion in inflammatory and infectious diseases. Platelets. 2017; 28(2): 155–64. https://doi.org/10.1080/09537104.2016.1240766. PMID: 27848259. PMCID: PMC5734920. 9. Ан О.И., Мартьянов А.А., Степанян М.Г. с соавт. Тромбоциты при COVID-19: «случайные прохожие» или соучастники? Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2021; 20(1): 184–191. (An O.I., Martyanov A.A., Stepanyan M.G. et al. Platelets in COVID-19: “Innocent by-standers” or active participants? Voprosy gematologii/onkologii i immunopatologii v pediatrii = Pediatric Hematology/Oncology and Immunopathology. 2021; 20(1): 184–191 (In Russ.)). https://doi.org/10.24287/1726-1708-2021-20-1-184-191. EDN: UEKZRK. 10. Zhong Q., Peng J. Mean platelet volume/platelet count ratio predicts severe pneumonia of COVID-19. J Clin Lab Anal. 2021; 35(1): e23607. https://doi.org/10.1002/jcla.23607. PMID: 33128497. PMCID: PMC7843293. 11. Le V.B., Schneider J.G., Boergeling Y. et al. Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis. Am J Respir Crit Care Med. 2015; 191(7): 804–19. https://doi.org/10.1164/rccm.201406-1031OC. PMID: 25664391. 12. Gao Y., Li T., Han M. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020; 92(7): 791–96. https://doi.org/10.1002/jmv.25770. PMID: 3218191.1 PMCID: PMC7228247. 13. Chu S.G., Becker R.C., Berger P.B. et al. Mean platelet volume as a predictor of cardiovascular risk: A systematic review and meta-analysis. J Thromb Haemost. 2010; 8(1): 148–56. https://doi.org/10.1111/j.1538-7836.2009.03584.x. PMID: 19691485. PMCID: PMC3755496. 14. Ahmadi E., Bagherpour Z., Zarei E. et al. Pathological effects of SARS-CoV-2 on hematological and immunological cells: Alterations in count, morphology, and function. Pathol Res Pract. 2022; 231: 153782. https://doi.org/10.1016/j.prp.2022.153782. PMID: 35121363. PMCID: PMC8800420. 15. Qu R., Ling Y., Zhang Y.H. et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol. 2020; 92(9): 1533–41. https://doi.org/10.1002/jmv.25767. PMID: 32181903. PMCID: PMC7228291. 16. Sarkar S., Kannan S., Khanna P. et al. Role of platelet-to-lymphocyte count ratio (PLR), as a prognostic indicator in COVID-19: A systematic review and meta-analysis. J Med Virol. 2022; 94(1): 211–21. https://doi.org/10.1002/jmv.27297. PMID: 34436785. PMCID: PMC8661888. 17. Гашимова Н.Р., Бицадзе В.О., Панкратьева Л.Л. с соавт. Дисрегуляция функции тромбоцитов у больных COVID-19. Акушерство, гинекология и репродукция. 2022; 16(6): 692–705. (Gashimova N.R., Bitsadze V.O., Pankratyeva L.L. et al. Dysregulated platelet function in COVID-19 patients. Akusherstvo, ginekologiya i reprodukciya = Obstetrics, Gynecology and Reproduction. 2022; 16(6): 692–705 (In Russ.)). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.372. EDN: AYGTRY. 18. Wool G.D., Miller J.L. The impact of COVID-19 disease on platelets and coagulation. Pathobiology. 2021; 88(1): 15–27. https://doi.org/10.1159/000512007. PMID: 33049751. PMCID: PMC7649697. 19. Koltai K., Kesmarky G., Feher G. et al. Platelet aggregometry testing: Molecular mechanisms, techniques and clinical implications. Int J Mol Sci. 2017; 18(8): 1803. https://doi.org/10.3390/ijms18081803. PMID: 28820484. PMCID: PMC5578190. 20. Пономаренко Е.А., Игнатова А.А., Федорова Д.В. с соавт. Функциональная активность тромбоцитов: физиология и методы лабораторной диагностики. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2019; 18(3): 112–119. (Ponomarenko E.A., Ignatova A.A., Fedorova D.V. et al. Platelet functional activity: physiology and laboratory diagnostic methods. Voprosy gematologii/onkologii i immunopatologii v pediatrii = Pediatric Hematology/Oncology and Immunopathology. 2019; 18(3): 112–119 (In Russ.)). https://doi.org/10.24287/1726-1708-2019-18-3-112-119. EDN: EQBSCQ.
Леонид Игоревич Кадников, аспирант кафедры фармакологии и клинической фармакологии ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России. Адрес: 620028, г. Екатеринбург, ул. Репина, д. 3.
E-mail: kadn-leonid@mail.ru
ORCID: https://orcid.org/0000-0002-2623-2657
Надежда Владимировна Изможерова, д. м. н., заведующая кафедрой фармакологии и клинической фармакологии ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России, ведущий научный сотрудник ФГБУН «Институт высокотемпературной электрохимии» Уральского отделения РАН. Адрес: 620028,
г. Екатеринбург, ул. Репина, д. 3.
E-mail: nadezhda_izm@mail.ru
ORCID: https://orcid.org/0000-0001-7826-9657
Артем Анатольевич Попов, д. м. н., заведующий кафедрой госпитальной терапии и скорой медицинской помощи ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России, ведущий научный сотрудник ФГБУН «Институт высокотемпературной электрохимии» Уральского отделения РАН. Адрес: 620028,
г. Екатеринбург, ул. Репина, д. 3.
E-mail: art_popov@mail.ru
ORCID: https://orcid.org/0000-0001-6216-2468
Ирина Петровна Антропова, д. биол. н., ведущий научный сотрудник Центральной научно-исследовательской лаборатории ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России, ведущий научный сотрудник ФГБУН «Институт высокотемпературной электрохимии» Уральского отделения РАН. Адрес: 620109, г. Екатеринбург, ул. Ключевская, д. 5.
E-mail: aip.hemolab@mail.ru
ORCID: https://orcid.org/0000-0002-9957-2505