Antihypertensive therapy in a patient with metabolic syndrome


DOI: https://dx.doi.org/10.18565/therapy.2024.7.105-112

Malimon V.V., Kokorin V.A.

1) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow; 2) RUDN University, Moscow
Abstract. Metabolic syndrome (MS) is a symptom complex of interrelated disorders of carbohydrate and lipid metabolism, as well as blood pressure and endothelial function regulation, which is based on tissue insulin resistance. MS prevalence remains to be extremely high, and its presence is associated with an increased risk of cardiovascular complications. The article pays special attention to highlighting the pathogenetic mechanisms of the development of arterial hypertension (AH) as one of the components of MS that requires control and treatment. Till nowadays there is no consensus on the choice of optimal treatment for arterial hypertension in case of MS. Among angiotensin II receptor blockers, telmisartan demonstrates special pharmacological properties, including a longer half-life, which provides a high and persistent antihypertensive activity for that medicine. Due to multiple pharmacological effects, telmisartan also has a positive effect on other MS components (diabetes mellitus, obesity, hyperlipidemia), as a result of which it could be considered as a drug of choice in the treatment of arterial hypertension in patients having MS.

Literature


1. Вербовой А.Ф., Вербовая Н.И., Долгих Ю.А. Ожирение – основа метаболического синдрома. Ожирение и метаболизм. 2021; 18(2): 142–149. (Verbovoy A.F., Verbovaya N.I., Dolgikh Yu.A. Obesity is the basis of metabolic syndrome. Ozhireniye i metabolism = Obesity and metabolism. 2021; 18(2): 142–149 (In Russ.)).


https://doi.org/10.14341/omet12707. EDN: WJJJXA.


2. Imenshahidi M., Hossenzadeh H. Effects of glycine on metabolic syndrome components: A review. J Endocrinol Invest. 2022; 45(5): 927–39.


https://doi.org/10.1007/s40618-021-01720-3. PMID: 35013990.


3. Prasad A., Quyyumi A.A. Renin-angiotensin system and angiotensin receptor blockers in the metabolic syndrome. Circulation. 2004; 110(11): 1507–12.


https://doi.org/10.1161/01.CIR.0000141736.76561.78. PMID: 15364819.


4. Imenshahidi M., Karimi G., Hosseinzadeh H. Effects of melatonin on cardiovascular risk factors and metabolic syndrome: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol. 2020; 393(4): 521–36.


https://doi.org/10.1007/s00210-020-01822-4. PMID: 32002576.


5. Velloso L.A., Folli F., Sun X.J. et al. Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci USA. 1996; 93(22): 12490–95.


https://doi.org/10.1073/pnas.93.22.12490. PMID: 8901609. PMCID: PMC38019.


6. Kloet A.D., Krause E.G., Woods S.C. The renin angiotensin system and the metabolic syndrome. Physiol Behav. 2010; 100(5): 525–34.


https://doi.org/10.1016/j.physbeh.2010.03.018. PMID: 20381510. PMCID: PMC2886177.


7. Boronat M., Saavedra P., Varillas V.F. Differences in traditional and emerging cardiovascular risk factors of subjects discordantly classified by metabolic syndrome definitions of the International Diabetes Federation and the National Cholesterol Education Program. Nutr Metab Cardiovasc Dis. 2009; 19(6): 417–22.


https://doi.org/10.1016/j.numecd.2008.07.010. PMID: 18819785.


8. Hammarsten J., Damber J.E., Haghsheno M.A. et al. A stage-dependent link between metabolic syndrome components and incident prostate cancer. Nat Rev Urol. 2018; 15(5): 321–33.


https://doi.org/10.1038/nrurol.2018.8. PMID: 29434372.


9. Han G.M., Gonzalez S., DeVries D. Combined effect of hyperuricemia and overweight/ obesity on the prevalence of hypertension among US adults: result from the National Health and Nutrition Examination Survey. J Hum Hypertens. 2014; 28(10): 579–86.


https://doi.org/10.1038/jhh.2014.31. PMID: 24785975.


10. Kelly A.S., Dengel D.R., Hodges J. et al. The relative contributions of the abdominal visceral and subcutaneous fat depots to cardiometabolic risk in youth. Clin Obes. 2014; 4(2): 101–7.


https://doi.org/10.1111/cob.12044. PMID: 24683420. PMCID: PMC3964618.


11. Karbowska J., Kochan Z. Role of adiponectin in the regulation of carbohydrate and lipid metabolism. J Physiol Pharmacol. 2006; 57(Suppl 6): 103–13. PMID: 17228091.


12. Nigro E., Scudiero O., Monaco M.L. et al. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int. 2014; 2014: 658913.


https://doi.org/10.1155/2014/658913. PMID: 25110685. PMCID: PMC4109424.


13. Matsuda M., Shimomura I. Roles of adiponectin and oxidative stress in obesity- associated metabolic and cardiovascular diseases. Rev Endocr Metab Disord. 2014; 15(1): 1–10.


https://doi.org/10.1007/s11154-013-9271-7. PMID: 24026768.


14. Durrani S., Shah J., Khan M.A. et al. Relationship of adiponectin level with lipid profile in type-2 diabetic men with coronary heart disease. J Ayub Med Coll Abbottabad. 2015; 27(1): 32–35. PMID: 26182732.


15. Cai X., Li X., Li L. et al. Adiponectin reduces carotid atherosclerotic plaque formation in ApoE-/- mice: roles of oxidative and nitrosative stress and inducible nitric oxide synthase. Mol Med Rep. 2015; 11(3): 1715–21.


https://doi.org/10.3892/mmr.2014.2947. PMID: 25395016. PMCID: PMC4270320.


16. Lefils-Lacourtablaise J., Socorro M., Géloën A. et al. The eicosapentaenoic acid metabolite 15-deoxy-δ(12,14)-prostaglandin J3 increases adiponectin secretion by adipocytes partly via a PPARγ-dependent mechanism. PLoS One. 2013; 8(5): e63997.


https://doi.org/10.1371/journal.pone.0063997. PMID: 23734181. PMCID: PMC3666990.


17. Mansour M. The roles of peroxisome proliferator-activated receptors in the metabolic syndrome. Prog Mol Biol Transl Sci. 2014; 121: 217–66.


https://doi.org/10.1016/B978- 0-12-800101-1.00007-7. PMID: 24373239.


18. Kadlec A.O., Chabowski D.S., Ait-Aissa K. et al. Role of PGC-1α in vascular regulation: Implications for atherosclerosis. Arterioscler Thromb Vasc Biol. 2016; 36(8): 1467–74.


https://doi.org/10.1161/atvbaha.116.307123. PMID: 27312223. PMCID: PMC4965312.


19. Gali Ramamoorthy T., Laverny G., Schlagowski A.I. et al. The transcriptional coregulator PGC-1β controls mitochondrial function and antioxidant defence in skeletal muscles. Nat Commun. 2015; 6: 10210.


https://doi.org/10.1038/ncomms10210. PMID: 26674215. PMCID: PMC4703903.


20. Chimonas T., Karagiannis A., Athyros V.G. et al. Blood pressure levels constitute the most important determinant of the metabolic syndrome in a mediterranean population: A discrimination analysis. Metab Syndr Relat Disord. 2010; 8(6): 523–29.


https://doi.org/10.1089/met.2010.0023. PMID: 20715970.


21. Mancia G., Bombelli M., Corrao G. et al. Metabolic syndrome in the Pressioni Arteriose Monitorate E Loro Associazioni (PAMELA) study: Daily life blood pressure, cardiac damage, and prognosis. Hypertension. 2007; 49(1): 40–47.


https://doi.org/10.1161/01.HYP.0000251933.22091.24. PMID: 17130308.


22. Schillaci G., Pirro M., Vaudo G. et al. Prognostic value of the metabolic syndrome in essential hypertension. J Am Coll Cardiol. 2004; 43(10): 1817–22.


https://doi.org/10.1016/j.jacc.2003.12.049. PMID: 15145106.


23. Arcucci O., de Simone G, Izzo R. et al. Association of suboptimal blood pressure control with body size and metabolic abnormalities. J Hypertens. 2007; 25(11): 2296–300.


https://doi.org/10.1097/HJH.0b013e3282e9a9e4. PMID: 17921825.


24. Kjeldsen S.E., Naditch-Brule L., Perlini S. et al. Increased prevalence of metabolic syndrome in uncontrolled hypertension across Europe: The global cardiometabolic risk profile in patients with hypertension disease survey. J Hypertens. 2008; 26(10): 2064–70.


https://doi.org/10.1097/HJH.0b013e32830c45c3. PMID: 18806632.


25. Cuspidi C., Meani S., Fusi V. et al. Metabolic syndrome and target organ damage in untreated essential hypertensives. J Hypertens. 2004; 22(10): 1991–98.


https://doi.org/10.1097/00004872-200410000-00023. PMID: 15361772.


26. Kotsis V., Jordan J., Micic D. et al. Obesity and cardiovascular risk: A call for action from the European Society of Hypertension Working Group of obesity, diabetes and the high-risk patient and European Association for the Study of Obesity: Part A: Mechanisms of obesity induced hypertension. J Hypertens. 2018; 36(7): 1427–40.


https://doi.org/10.1097/HJH.0000000000001730. PMID: 29634663.


27. Mancia G., Bousquet P., Elghozi J.L. et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007; 25(5): 909–20.


https://doi.org/10.1097/HJH.0b013e328048d004. PMID: 17414649.


28. Nickenig G., Roling J., Strehlow K. et al. Insulin induces upregulation of vascular receptor gene expression by posttranscriptional mechanisms. Circulation. 1998; 98(22): 2453–60.


https://doi.org/10.1161/01.cir.98.22.2453. PMID: 9832492.


29. Kotsis V., Stabouli S., Papakatsika S. et al. Mechanisms of obesity-induced hypertension. Hypertens Res. 2010; 33(5): 386–93.


https://doi.org/10.1038/hr.2010.9. PMID: 20442753.


30. Landsberg L., Aronne L.J., Beilin L.J. et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of The Obesity Society and the American Society of Hypertension. J Clin Hypertens (Greenwich). 2013; 15(1): 14–33.


https://doi.org/10.1111/jch.12049. PMID: 23282121. PMCID: PMC8108268.


31. Кобалава Ж.Д., Конради А.О., Недогода С.В. с соавт. Артериальная гипертензия у взрослых. Клинические рекомендации 2020. Российский кардиологический журнал. 2020; 25(3): 149–218. (Kobalava Zh.D., Konradi A.O., Nedogoda S.V. et al. Arterial hypertension in adults. Clinical guidelines 2020. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2020; 25(3): 149–218 (In Russ.)).


https://doi.org/10.15829/1560-4071-2020-3-3786. EDN: TCRBRB.


32. Резник Е.В., Никитин И.Г. Новые рекомендации АСС/AHA и ESC/ESH по артериальной гипертонии. Кардиоваскулярная терапия и профилактика. 2018; 17(5): 99–119. (Reznik E.V., Nikitin I.G. New АСС/AHA and ESC/ESH arterial hypertension guidelines. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2018; 17(5): 99–119 (In Russ.)).


https://doi.org/10.15829/1728-8800-2018-5-99-119. EDN: YPXLAT.


33. Резник Е.В., Никитин И.Г. Алгоритм ведения больных с артериальной гипертонией при метаболическом синдроме. Архивъ внутренней медицины. 2019; 9(5): 327–47. (Reznik E.V., Nikitin I.G. Hypertension management in metabolic syndrome. Arkhiv vnutrenney meditsiny = Archives of Internal Medicine. 2019; 9(5): 327–47 (In Russ.)).


https://doi.org/10.20514/2226-6704-2019-9-5-327-347. EDN: MYBTFH.


34. Williams B., Mancia G., Spiering W. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018; 39(33): 3021–104.


https://doi.org/10.1093/eurheartj/ehy339. PMID: 30165516.


35. Katsimardou A., Imprialos K., Stavropoulos K. et al. Hypertension in Metabolic Syndrome: Novel Insights. Curr Hypertens Rev. 2020; 16(1): 12–18.


https://doi.org/10.2174/1573402115666190415161813. PMID: 30987573.


36. Оганов Р.Г., Денисов И.Н., Симаненков В.И. с соавт. Коморбидная патология в клинической практике. Клинические рекомендации. Кардиоваскулярная терапия и профилактика. 2017; 16(6): 5–56. (Oganov R.G., Denisov I.N., Simanenkov V.I. et al. Comorbidities in practice. Clinical guidelines. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2017; 16(6): 5–56 (In Russ.)).


https://doi.org/10.15829/1728-8800-2017-6-5-56. EDN: ZVZZGR.


37. Чазова И.Е., Недогода С.В., Жернакова Ю.В. с соавт. Рекомендации по ведению больных артериальной гипертонией с метаболическими нарушениями. Кардиологический вестник. 2014; 9(1): 3–57. (Chazova I.E., Nedogoda S.V., Zhernakova Yu.V. et al. Recommendations for the management of patients with arterial hypertension with metabolic disorders. Kardiologicheskij vestnik = Russian Cardiology Bulletin. 2014; 9(1): 3–57 (In Russ.)).


https://doi.org/10.38109/2225-1685-2022-3-6-56. EDN: SAXAPX.


38. Akhrass P.R., McFarlane S.I. Telmisartan and cardioprotection. Vasc Health Risk Manag. 2011; 7: 677–83.


https://doi.org/10.2147/VHRM.S9447. PMID: 22140319. PMCID: PMC3225351.


39. Yusuf S., Gerstein H., Hoogwerf B. et al. Ramipril and the development of diabetes. JAMA. 2001; 286(15): 1882–85.


https://doi.org/10.1001/jama.286.15.1882. PMID: 11597291.


40. McCall K.L., Craddock D., Edwards K. Effect of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor blockers on the rate of new-onset diabetes mellitus: a review and pooled analysis. Pharmacotherapy. 2006; 26(9): 1297–306.


https://doi.org/10.1592/phco.26.9.1297. PMID: 16945052.


41. Yamashita H., Yoda H., Kuroki N. et al. Angiotensin II type 1 receptor blockers improve insulin sensitivity in patients with schizophrenia being treated with olanzapine. Psychopharmacology. 2011; 213(1): 1–9.


https://doi.org/10.1007/s00213-010-2002-9. PMID: 20820759.


42. Ayza M.A., Zewdie K.A., Tesfaye B.A. et al. Antidiabetic effect of telmisartan through its partial PPARγ-agonistic activity, Diabetes Metab Syndr Obes. 2020; 13: 3627–35.


https://doi.org/10.2147/DMSO.S265399. PMID: 33116714. PMCID: PMC7567533.


43. Cheng K.C., Li Y., Chang W.T. et al. Telmisartan is effective to ameliorate metabolic syndrome in rat model – a preclinical report. Diabetes Metab Syndr Obes. 2018; 11: 901–11.


https://doi.org/10.2147/DMSO.S187092. PMID: 30584345. PMCID: PMC6290862.


44. Takagi H., Niwa M., Mizuno Y. et al. Telmisartan as a metabolic sartan: the first meta-analysis of randomized controlled trials in metabolic syndrome. J Am Soc Hypertens. 2013; 7(3): 229–35.


https://doi.org/10.1016/j.jash.2013.02.006. PMID: 23523138.


45. Chen T., Xing J., Liu Y. Effects of telmisartan on vascular endothelial function, inflammation and insulin resistance in patients with coronary heart disease and diabetes mellitus. Exp Ther Med. 2018; 15(1): 909–13.


https://doi.org/10.3892/etm.2017.5451. PMID: 29399098. PMCID: PMC5772733.


46. Stangier J., Su C.A., Roth W. Pharmacokinetics of orally and intravenously administered telmisartan in healthy young and elderly volunteers and in hypertensive patients. J Int Med Res. 2000; 28(4): 149–67.


https://doi.org/10.1177/147323000002800401. PMID: 11014323.


47. Haraguchi T., Iwasaki K., Takasaki K. et al. Telmisartan, a partial agonist of peroxisome proliferator-activated receptor gamma, improves impairment of spatial memory and hippocampal apoptosis in rats treated with repeated cerebral ischemia. Brain Res. 2010; 1353: 125–32.


https://doi.org/10.1016/j.brainres.2010.07.017. PMID: 20637184.


48. Amano Y., Yamaguchi T., Ohno K. et al., Structural basis for telmisartan-mediated partial activation of PPAR gamma. Hypertens Res. 2012; 35(7): 715–19.


https://doi.org/10.1038/hr.2012.17. PMID: 22357520.


49. Vitale C., Mercuro G., Castiglioni C. et al. Metabolic effect of telmisartan and losartan in hypertensive patients with metabolic syndrome. Cardiovasc Diabetol. 2005; 4: 6.


https://doi.org/10.1186/1475-2840-4-6. PMID: 15892894. PMCID: PMC1174877.


50. Suksomboon N., Poolsup N., Prasit T. Systematic review of the effect of telmisartan on insulin sensitivity in hypertensive patients with insulin resistance or diabetes. J Clin Pharm Ther. 2012; 37(3): 319–27.


https://doi.org/10.1111/j.1365-2710.2011.01295.x. PMID: 21848583.


51. Kubik M., Chudek J., Adamczak M., Wiecek A. Telmisartan improves cardiometabolic profile in obese patients with arterial hypertension. Kidney Blood Press Res. 2012; 35(4): 281–89.


https://doi.org/10.1159/000334951. PMID: 22378488.


52. Bochar O.M., Sklyarova H.Y., Faynyk A.F. et al. The effect of therapy with olmesartan or telmisartan in patients with arterial hypertension combined with obesity. Wiad Lek. 2020; 73(2): 321–24. PMID: 32248168.


53. Mori H., Okada Y., Arao T. et al. Telmisartan at 80 mg/day increases high-molecular-weight adiponectin levels and improves insulin resistance in diabetic patients. Adv Ther. 2012; 29(7): 635–44.


https://doi.org/10.1007/s12325-012-0032-x. PMID: 22821644.


54. Nishimura T., Hashimoto J., Ohkubo T. et al. Efficacy and duration of action of the four selective angiotensin II subtype 1 receptor blockers, losartan, candesartan, valsartan and telmisartan, in patients with essential hypertension determined by home blood pressure measurements. Clin Exp Hypertens. 2005; 27(6): 477–89.


https://doi.org/10.1081/CEH-200067668. PMID: 16081340.


55. Zou Z., Xi G.L., Yuan H.B. et al. Telmisartan versus angiotension-converting enzyme inhibitors in the treatment of hypertension: a meta-analysis of randomized controlled trials. J Hum Hypertens. 2009; 23(5): 339–49.


https://doi.org/10.1038/jhh.2008.132. PMID: 18987649.


56. Gao S., Park B.M., Cha S.A. et al. Comparision of secretagogue effects of rosiglitazone and telmisartan on ANP secretion in rats. Peptides. 2014; 56: 52–58.


https://doi.org/10.1016/j.peptides.2014.03.014. PMID: 24703963.


57. Jayapriya B., Thamilarasi S., Shanthi M., Jafrin A.L. Effect of telmisartan on blood pressure and lipid profile in hypertensive patients with dyslipidemia. Int J Pharm Life Sci. 2013; 4(10): 3035–40.


58. Derosa G., Ragonesi P.D., Mugellini A. et al. Effects of telmisartan compared with eprosartan on blood pressure control, glucose metabolism and lipid profile in hypertensive, type 2 diabetic patients: a randomized, double-blind, placebo-controlled 12-month study. Hypertens Res. 2004; 27(7): 457–64.


https://doi.org/10.1291/hypres.27.457. PMID: 15302981.


59. Murakami K., Wada J., Ogawa D. et al. The effects of telmisartan treatment on the abdominal fat depot in patients with metabolic syndrome and essential hypertension: Abdominal fat Depot Intervention Program of Okayama (ADIPO). Diabetes Vasc Dis Res. 2013; 10(1): 93–96.


https://doi.org/10.1177/1479164112444640. PMID: 22561230.


60. Choi G.J., Kim H.M., Kang H., Kim J. Effects of telmisartan on fat distribution: a meta-analysis of randomized controlled trials. Curr Med Res Opin. 2016; 32(7): 1303–9.


https://doi.org/10.1185/03007995.2016.1171204. PMID: 27010868.


About the Autors


Valentin V. Malimon, MD, assistant at the Department of hospital therapy named after academician P.E. Lukomsky of the Institute of Clinical Medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova St.
E-mail: malimon.1993@mail.ru
ORCID: https://orcid.org/0009-0006-2808-0956
Valentin A. Kokorin, MD, Dr. Sci. (Medicine), associate professor, head of the Department of hospital therapy with courses in endocrinology, hematology and clinical laboratory diagnostics of the Medical Institute, RUDN University, professor of the Department of hospital therapy named after academician P.E. Lukomsky of the Institute of Clinical Medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117198, Moscow, 8 Miklouho-Maklaya St.
E-mail: valentinkokorin@yahoo.com
ORCID: https://orcid.org/0000-0001-8614-6542


Similar Articles


Бионика Медиа