Эпштейна–Барр вирусная инфекция: от инфекционного мононуклеоза до лимфопролиферативного заболевания


DOI: https://dx.doi.org/10.18565/therapy.2021.2.112-122

А.И. Мазус, Е.В. Цыганова, Н.В. Глухоедова, А.С. Жиленкова

Московский городской центр профилактики и борьбы со СПИДом Департамента здравоохранения города Москвы
Аннотация. Вирус Эпштейна–Барр (ЭБВ) как представитель семейства герпесвирусов успешно и пожизненно персистирует в организме человека после инфицирования. Благодаря сложному жизненному циклу и комплексному взаимодействию с различными компонентами врожденного и адаптивного иммунитета ЭБВ способен использовать программы клеточной гибели и воспаления для собственных нужд. На сегодня описан и изучен пролиферативный потенциал ЭБВ; помимо латентной инфекции, он может вызывать развитие такого редкого заболевания, как хроническая активная ЭБВ- инфекция и целого ряда вирус-индуцированных неоплазм. В настоящем обзоре обобщены сведения об ЭБВ-инфекции, освещены изученные моменты взаимодействия внутри системы «вирус–макроорганизм», приведены клинические параллели. Безусловно, тема нуждается в дальнейшем всестороннем исследовании, и авторский коллектив, не претендуя на окончательность суждений, лишь хочет приоткрыть масштабы проблемы для широкого круга медицинских специалистов.
Ключевые слова: вирус Эпштейна–Барр, инфекционный мононуклеоз, хроническая активная Эпштейн–Барр вирусная инфекция

Литература



  1. Jangra S., Yuen K.S., Botelho M.G., Jin DY. Epstein–Barr virus and innate immunity: Friends or foes? Microorganisms. 2019; 7(6): 183. doi: 10.3390/microorganisms7060183.

  2. Kuri A., Jacobs B.M., Vickaryous N. et al. Epidemiology of Epstein–Barr virus infection and infectious mononucleosis in the United Kingdom. BMC Public Health. 2020; 20(1): 912. doi: 10.1186/s12889-020-09049-x.

  3. Luzuriaga K., Sullivan J.L. Infectious mononucleosis. N Engl J Med. 2010; 362(21): 1993–2000. doi: 10.1056/NEJMcp1001116.

  4. Balfour H.H. Jr, Sifakis F., Sliman J.A. et al. Age-Specific prevalence of Epstein–Barr virus infection among individuals aged 6–19 years in the United States and factors affecting its acquisition. J Infect Dis. 2013; 208(8): 1286–93. doi: 10.1093/infdis/jit321.

  5. Dowd J.B., Palermo T., Brite J. et al. Seroprevalence of Epstein–Barr virus infection in U.S. children ages 6–19, 2003–2010. PLoS One. 2013; 8(5): e64921. doi: 10.1371/journal.pone.0064921.

  6. Balfour H.H., Dunmire S.K., Hogquist K.A. Infectious mononucleosis. Clin Transl Immunology. 2015; 4(2): e33. doi: 10.1038/cti.2015.1.

  7. Kanda T., Yajima M., Ikuta K. Epstein–Barr virus strain variation and cancer. Cancer Sci. 2019; 110(4): 1132–39. doi: 10.1111/cas.13954.

  8. AbuSalah M.A.H., Gan S.H., Al-Hatamleh M.A.I. et al. Recent advances in diagnostic approaches for Epstein–Barr virus. Pathogens. 2020; 9(3): 226. doi: 10.3390/pathogens9030226.

  9. Lunemann J.D., Kamradt T., Martin R., Munz C. Epstein–Barr virus: environmental trigger of multiple sclerosis? J Virol. 2007; 81(13): 6777–84. doi: 10.1128/JVI.00153-07.

  10. Pender M.P. Epstein–Barr virus and autoimmunity. Infect Autoimmun. 2nd ed. 2004: 163–70. doi: 10.1016/B978-044451271-0/50013-2.

  11. Fujiwara S., Takei M. Epstein–Barr virus and autoimmune diseases. Clin Exp Neuroimmunol. 2015; 6(S1): 38–48. doi: 10.1111/cen3.12263.

  12. Xu T., Zhao Q., Li W. et al. X-linked lymphoproliferative syndrome in mainland China: review of clinical, genetic, and immunological characteristic. Eur J Pediatr. 2020; 179(2): 327–38. doi: 10.1007/s00431-019-03512-7.

  13. Panchal N., Booth C., Cannons J.L., Schwartzberg P.L. X-linked lymphoproliferative disease type 1: A clinical and molecular perspective. Front Immunol. 2018; 9: 666. doi: 10.3389/fimmu.2018.00666.

  14. Blackburn P.R., Lin W.L., Miller D.A. et al. X-linked lymphoproliferative syndrome presenting as adult-onset multi-infarct dementia. J Neuropathol Exp Neurol. 2019; 78(5): 460–66. doi: 10.1093/jnen/nlz018.

  15. Gulley M.L., Tang W. Laboratory assays for Epstein–Barr virus-related disease. J Mol Diagn. 2008; 10(4): 279–92. doi: 10.2353/jmoldx.2008.080023.

  16. Stanland L.J., Luftig M.A. The role of EBV-induced hypermethylation in gastric cancer tumorigenesis. Viruses. 2020; 12(11): 1222. doi: 10.3390/v12111222.

  17. Chang M.S., Kim H., Kim W.H. Epstein–Barr virus in human malignancy: A Special Reference to Epstein–Barr virus associated gastric carcinoma. Cancer Res Treat. 2005; 37(5): 257–67. doi: 10.4143/crt.2005.37.5.257.

  18. Shannon-Lowe C., Rickinson A.B., Bell A.I. Epstein–Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci. 2017; 372(1732): 20160271. doi: 10.1098/rstb.2016.0271.

  19. Huppmann A.R., Nicolae A., Slack G.W. et al. EBV may be expressed in the LP cells of nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) in both children and adults. Am J Surg Pathol. 2014; 38(3): 316–24. doi: 10.1097/PAS.0000000000000107.

  20. Carbone A., Gloghini A. Epstein Barr virus-associated Hodgkin lymphoma. Cancers (Basel). 2018; 10(6): 163. doi: 10.3390/cancers10060163.

  21. Chang C.M., Yu K.J., Mbulaiteye S.M., Hildesheim A, Bhatia K. The extent of genetic diversity of Epstein-Barr virus and its geographic and disease patterns: A need for reappraisal. Virus Res. 2009; 143(2): 209–21. doi: 10.1016/j.virusres.2009.07.005.

  22. Kwok H., Chiang A.K.S. From conventional to next generation sequencing of Epstein–Barr virus genomes. Viruses. 2016; 8(3): 60. doi: 10.3390/v8030060.

  23. Tzellos S., Farrell P.J. Epstein–Barr virus sequence variation-biology and disease. Pathogens. 2012; 1(2): 156–74. doi: 10.3390/pathogens1020156.

  24. Johnston W.T., Mutalima N., Sun D. et al. Relationship between Plasmodium falciparum malaria prevalence, genetic diversity and endemic Burkitt lymphoma in Malawi. Sci Rep. 2014; 4: 3741. doi: 10.1038/srep03741.

  25. Mahdavifar N., Ghoncheh M., Mohammadian-Hafshejani A. et al. Epidemiology and inequality in the incidence and mortality of nasopharynx cancer in Asia. Osong Public Health Res Perspect. 2016; 7(6): 360–72. doi: 10.1016/j.phrp.2016.11.002.

  26. Cohen J.I., Fauci A.S., Varmus H., Nabel G.J. Epstein–Barr virus: An important vaccine target for cancer prevention. Sci Transl Med. 2011; 3(107): 107fs7. doi: 10.1126/scitranslmed.3002878.

  27. Hildesheim A., Wang C.P. Genetic predisposition factors and nasopharyngeal carcinoma risk: A review of epidemiological association studies, 2000–2011: Rosetta Stone for NPC: genetics, viral infection, and other environmental factors. Semin Cancer Biol. 2012; 22(2): 107–16. doi: 10.1016/j.semcancer.2012.01.007.

  28. Kimura H., Ito Y., Kawabe S. et al. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: Prospective analysis of 108 cases. Blood. 2012; 119(3): 673–86. doi: 10.1182/blood-2011-10-381921.

  29. Buschle A., Hammerschmidt W. Epigenetic lifestyle of Epstein–Barr virus. Semin Immunopathol. 2020; 42(2): 131–42. doi: 10.1007/s00281-020-00792-2.

  30. Jochum S., Ruiss R., Moosmann A. et al. RNAs in Epstein-Barr virions control early steps of infection. Proc Natl Acad Sci U S A. 2012; 109(21): E1396–404. doi: 10.1073/pnas.1115906109.

  31. Mrozek-Gorska P., Buschle A., Pich D. et al. Epstein-Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc Natl Acad Sci U S A. 2019; 116(32): 16046–55. doi: 10.1073/pnas.1901314116.

  32. Amon W., Binne U.K., Bryant H. et al. Lytic cycle gene regulation of Epstein–Barr virus. J Virol. 2004; 78(24): 13460–69. doi: 10.1128/JVI.78.24.13460-13469.2004.

  33. Ersing I., Nobre L., Wang L.W. et al. A temporal proteomic map of Epstein–Barr virus lytic replication in B cells. Cell Rep. 2017; 19(7): 1479–93. doi: 10.1016/j.celrep.2017.04.062.

  34. Lupey-Green L.N., Moquin S.A., Martin K.A. et al. PARP1 restricts Epstein Barr virus lytic reactivation by binding the BZLF1 promoter. Virology. 2017; 507: 220–30. doi: 10.1016/j.virol.2017.04.006.

  35. Odumade O.A., Hogquist K.A., Balfour H.H. Progress and problems in understanding and managing primary Epstein–Barr virus infections. Clin Microbiol Rev. 2011; 24(1): 193–209. doi: 10.1128/CMR.00044-10.

  36. Wingate P.J., McAulay K.A., Anthony I.C., Crawford D.H. Regulatory T cell activity in primary and persistent Epstein–Barr virus infection. J Med Virol. 2009; 81(5): 870–77. doi: 10.1002/jmv.21445.

  37. Lanier L.L. Evolutionary struggles between NK cells and viruses. Nat Rev Immunol. 2008; 8(4): 259–68. doi: 10.1038/nri2276.

  38. Orange J.S. Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect. 2002; 4(15): 1545–58. doi: 10.1016/s1286-4579(02)00038-2.

  39. Zhang Y., Wallace D.L., de Lara C.M. et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology. 2007; 121(2): 258–65. doi: 10.1111/j.1365-2567.2007.02573.x.

  40. Silins S.L., Sherritt M.A., Silleri J.M. et al. Asymptomatic primary Epstein-Barr virus infection occurs in the absence of blood T-cell repertoire perturbations despite high levels of systemic viral load. Blood. 2001; 98(13): 3739–44. doi: 10.1182/blood.v98.13.3739.

  41. Long H.M., Chagoury O.L., Leese A.M. et al. MHC ii tetramers visualize human cd4+t cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen ebna1 response. J Exp Med. 2013; 210(5): 933–49. doi: 10.1084/jem.20121437.

  42. Hess R.D. Routine Epstein–Barr virus diagnostics from the laboratory perspective: Still challenging after 35 years. J Clin Microbiol. 2004; 42(8): 3381–87. doi: 10.1128/JCM.42.8.3381-3387.2004.

  43. Nystad T.W., Myrmel H. Prevalence of primary versus reactivated Epstein–Barr virus infection in patients with VCA IgG-, VCA IgM- and EBNA-1-antibodies and suspected infectious mononucleosis. J Clin Virol. 2007; 38(4): 292–97. doi: 10.1016/j.jcv.2007.01.006.

  44. Teow S.Y., Liew K., Khoo A.S., Peh S.C. Pathogenic role of exosomes in Epstein–Barr virus (EBV)-associated cancers. Int J Biol Sci. 2017; 13(10): 1276–86. doi: 10.7150/ijbs.19531.

  45. Teow S.Y., Peh S.C. Exosomes as the promising biomarker for Epstein–Barr virus (EBV)-associated cancers. Novel Implications of Exosomes in Diagnosis and Treatment of Cancer and Infectious Diseases. Ed. by Wang J. InTechOpen. 2017: 97–114. doi: 10.5772/intechopen.69532.

  46. Wu Y., Ma S., Zhang L. et al. Clinical manifestations and laboratory results of 61 children with infectious mononucleosis. J Int Med Res. 2020; 48(10): 300060520924550. doi: 10.1177/0300060520924550.

  47. Ciccarese G., Trave I., Herzum A. et al. Dermatological manifestations of Epstein–Barr virus systemic infection: a case report and literature review. Int J Dermatol. 2020; 59(10): 1202–09. doi: 10.1111/ijd.14887.

  48. Chuh A., Zawar V., Law M., Sciallis G. Gianotti–Crosti syndrome, pityriasis rosea, asymmetrical periflexural exanthem, unilateral mediothoracic exanthem, eruptive pseudoangiomatosis, and papular-purpuric gloves and socks syndrome: a brief review and arguments for diagnostic criteria. Infect Dis Rep. 2012; 4(1): e12. doi: 10.4081/idr.2012.e12.

  49. Womack J., Jimenez M. Common questions about infectious mononucleosis. Am Fam Physician. 2015; 91(6): 372–76.

  50. Dunmire S.K., Verghese P.S., Balfour H.H. Primary Epstein–Barr virus infection. J Clin Virol. 2018; 102: 84–92. doi: 10.1016/j.jcv.2018.03.001.

  51. Fugl A., Andersen C.L. Epstein–Barr virus and its association with disease – A review of relevance to general practice. BMC Fam Pract. 2019; 20(1): 62. doi: 10.1186/s12875-019-0954-3.

  52. De Paor M., O’Brien K., Fahey T., Smith S.M. Antiviral agents for infectious mononucleosis (glandular fever). Cochrane Database Syst Rev. 2016; 12(12): CD011487. doi: 10.1002/14651858.CD011487.pub2.

  53. Lennon P., O’Neill J.P., Fenton J.E. Effect of metronidazole versus standard care on length of stay of patients admitted with severe infectious mononucleosis: A randomized controlled trial. Clin Microbiol Infect. 2014; 20(7): O450–52. doi: 10.1111/1469-0691.12437.

  54. Lennon P., Crotty M., Fenton J.E. Infectious mononucleosis. BMJ. 2015; 350: h1825. doi: 10.1136/bmj.h1825.

  55. Rezk E., Nofal Y.H., Hamzeh A. et al. Steroids for symptom control in infectious mononucleosis. Cochrane Database Syst Rev. 2015; 2015(11): CD004402. doi: 10.1002/14651858.CD004402.pub3.

  56. Arai A. Advances in the study of chronic active Epstein–Barr virus infection: Clinical features under the 2016 WHO classification and mechanisms of development. Front Pediatr. 2019; 7: 14. doi: 10.3389/fped.2019.00014.

  57. Okano M., Kawa K., Kimura H. et al. Proposed guidelines for diagnosing chronic active Epstein–Barr virus infection. Am J Hematol. 2005; 80(1): 64–69. doi: 10.1002/ajh.20398.


Об авторах / Для корреспонденции


Алексей Израилевич Мазус, д.м.н., профессор, главный внештатный специалист по проблемам ВИЧ-инфекции Минздрава России и Департамента здравоохранения города Москвы, руководитель Московского городского центра профилактики и борьбы со СПИДом Департамента здравоохранения города Москвы. Адрес: 105275, г. Москва, 8-я ул. Соколиной Горы, д. 15, к. 5. Тел.: 8 (495) 365-21-52. E-mail: aids@spid.ru. ORCID: 0000-0003-2581-1443
Елена Валерьевна Цыганова, к.м.н., врач-инфекционист, заведующая научно-клиническим отделом Московского городского центра профилактики и борьбы со СПИДом Департамента здравоохранения города Москвы. Адрес: 105275, г. Москва, 8-я ул. Соколиной Горы, д. 15, к. 5. Тел.: 8 (916) 846-88-29. E-mail: TsyganovaElena@yandex.ru. ORCID: 0000-0002-3410-2510
Наталия Владимировна Глухоедова, к.м.н., врач-инфекционист научно-клинического отдела Московского городского центра профилактики и борьбы со СПИДом Департамента здравоохранения города Москвы. Адрес: 105275, г. Москва, 8-я ул. Соколиной Горы, д. 15, к. 5. Тел.: 8 (926) 121-18-18. E-mail: febris1@yandex.ru. ORCID: 0000-0003-2414-6103
Александра Сергеевна Жиленкова, врач-инфекционист научно-клинического отдела Московского городского центра профилактики и борьбы со СПИДом Департамента здравоохранения города Москвы. Адрес: 105275, г. Москва, 8-я ул. Соколиной Горы, д. 15, к. 5. Тел.: 8 (915) 178-74-37. E-mail: o.zhilenkova@mail.ru. ORCID: 0000-0001-8139-4061


Бионика Медиа