Targeted therapy of COVID-19 in ambulatory-polyclinical practice


DOI: https://dx.doi.org/10.18565/therapy.2020.8.74-89

Granovskaya M.V., Demidova T.Yu., Zaslavskaya K.Ya., Balykova L.A.

1) Institute for Systems Biology, University College Dublin (Ireland); 2) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow; 3) PROMOMED DM LLC, Moscow; 4) N.P. Ogarev Mordovia State University, Saransk
Current review highlights the pathogenesis of the new coronavirus infection (COVID-19), as well as the existing methods and perspectives for etiotropic therapy of the disease. Special attention is paid to the results of clinical studies devoted to the efficacy and safety of the selective inhibitor of RNA-dependent RNA polymerase favipiravir, as well as to methods of correcting obesity as one of the leading factors in the development of complications in COVID-19 patients.

Literature



  1. Временные методические рекомендации Министерства здравоохранения Российской Федерации: профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 9 от 26.10.2020. [Temporary guidelines of the Ministry of Healthcare of Russia for the prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 9 dated 26.10.2020 (In Russ.)].

  2. Грановская М.В., Заславская К.Я., Балыкова Л.А., Пушкарь Д.Ю. COVID-19: набор симптомов или системная патология? Клиническая лекция. Часть 2. Арепливир (фавипиравир) в терапии пациентов с коронавирусной инфекцией: предпосылки для назначения и первые результаты использования. Инфекционные болезни: новости, мнения, обучение. 2020; 3 (приложение): 10–17. [Granovskaya M.V., Zaslavskaya K.Ya., Balykova L.A., Pushkar D.Yu. COVID-19: a set of symptoms or a systemic pathology? Clinical lecture. Part 2. Areplivir (favipiravir) in the treatment of patients with coronavirus infection: prerequisites for prescription and first results of use. Infetsionnye bolezni: novosti, mneniya, obuchenie. 2020; 3 (Suppl.): 10–17 (In Russ.)]. doi: https://doi.org/10.33029/2305-3496-2020-9-3S-10-17.

  3. Zhou P., Yung X.-L., Wang X.-G. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270–73. doi: 10.1038/s41586-020-2012-7.

  4. Gupta A., Madhavan M.V., Sehgal K. et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020; 26(7): 1017–32. doi: 10.1038/s41591-020-0968-3.

  5. Siu K.-L., Yuen K.-T., Castano-Rodriguez C.et al. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J. 2019; 33(8): 8865–77. doi: 10.1096/fj.201802418R.

  6. Wan Y., Shang J., Graham R. et al. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J Virol. 2020; 94(7): e00127–20. doi: 10.1128/JVI.00127-20.

  7. Грановская М.В., Заславская К.Я. COVID-19: набор симптомов или системная патология? Клиническая лекция. Часть 1. Особенности полиорганных нарушений. Инфекционные болезни: новости, мнения, обучение. 2020; 3 (приложение): 3–9. [Granovskaya M.V., Zaslavskaya K.Ya. COVID-19: a set of symptoms or a systemic pathology? Clinical lecture. Part 1. Features of multiple organ disorders. Infetsionnye bolezni: novosti, mneniya, obuchenie. 2020; 3 (Suppl.): 3–9 (In Russ.)]. doi: https://doi.org/10.33029/2305-3496-2020-9-3S-3-9.

  8. EVMS Critical Care COVID-19 Management Protocol. Eastern Virginia Medical School, October 29, 2020 URL: https://www.evms.edu/media/evms_public/departments/internal_medicine/EVMS_Critical_Care_COVID-19_Protocol.pdf (date of access – 01.11.2020).

  9. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271–80.e8. doi: 10.1016/j.cell.2020.02.052.

  10. Chen Y., Liu Q., Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020; 92(4): 418–23. doi:10.1002/jmv. 25681.

  11. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015; 1282: 1–23. doi: 10.1007/978-1-4939-2438-7_1.

  12. Fung T.S., Liu D.X. Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol. 2014; 5: 296. doi:10.3389/fmicb.2014. 00296.

  13. Savarino A., Boelaert J.R., Cassone A. et al. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis. 2003; 3(11): 722–27. doi: 10.1016/S1473-3099(03) 00806-5.

  14. Al-Bari M.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect. 2017; 5(1): e00293. doi: 10.1002/prp2.293.

  15. Sanders J.M., Monogue M.L., Jodlowski T.Z., Cutrell J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020; 323(18): 1824–36. doi: 10.1001/jama.2020.6019.

  16. Shiraki K., Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. PharmacolTher. 2020; 209: 107512. doi: 10.1016/j.pharmthera.2020.107512.

  17. Furuta Y., Takahashi K., Kuno-Maekawa M. et al. Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother. 2005; 49(3): 981–86. doi: 10.1128/AAC.49.3.981-986.2005.

  18. Furuta Y., Komeno T., Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017; 93(7): 449–63. doi: 10.2183/pjab.93.027.

  19. Takahashi K., Furuta Y., Fukuda Y. et al. In vitro and in vivo activities of T-705 and oseltamivir against influenza virus. Antivir Chem Chemother. 2003; 14(5): 235–41. doi: 10.1177/095632020301400502.

  20. Kiso M., Takahashi K., Sakai-Tagawa Y. et al. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc Natl Acad Sci U S A. 2010; 107(2): 882–87. doi: 10.1073/pnas.0909603107.

  21. Song R., Chen Z., Li W. Severe fever with thrombocytopenia syndrome (SFTS) treated with a novel antiviral medication, favipiravir (T-705). Infection. 2020; 48(2): 295–98. doi: 10.1007/s15010-019-01364-9.

  22. Delang L., Abdelnabi R., Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res. 2018; 153: 85–94. doi: 10.1016/j.antiviral.2018.03.003.

  23. Rocha-Pereira J., Jochmans D., Dallmeier K. et al. Favipiravir (T-705) inhibits in vitro norovirus replication. Biochem Biophys Res Commun. 2012; 424(4): 777–80. doi: 10.1016/j.bbrc.2012.07.034.

  24. Zmurko J., Marques R.E., Schols D. et al. The viral polymerase inhibitor 7-deaza-2’-c-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl Trop Dis. 2016; 10(5): e0004695. doi: 10.1371/journal.pntd.0004695.

  25. Delang L., Segura Guerrero N., Tas A. et al. Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. J Antimicrob Chemother. 2014; 69(10): 2770–84. doi: 10.1093/jac/dku209.

  26. Safronetz D., Falzarano D., Scott D.P. et al. Antiviral efficacy of favipiravir against two prominent etiological agents of hantavirus pulmonary syndrome. Antimicrob Agents Chemother. 2013; 57(10): 4673–80. doi: 10.1128/AAC.00886-13.

  27. Wang Y., Fan G., Salam A. et al. Comparative effectiveness of combined favipiravir and oseltamivir therapy versus oseltamivir monotherapy in critically ill patients with influenza virus infection. J Infect Dis. 2020; 221(10): 1688–98. doi: 10.1093/infdis/jiz656.

  28. Sissoko D., Laouenan C., Folkesson E. et al. Experimental treatment with favipiravir for Ebola virus disease (the JIKI Trial): A historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Med. 2016; 13(3): e1001967. doi: 10.1371/journal.pmed.1001967.

  29. Naesens L., Guddat L.W., Keough D.T. et al. Role of human hypoxanthine guanine phosphoribosyltransferase in activation of the antiviral agent T-705 (favipiravir). MolPharmacol. 2013; 84(4): 615–29. doi: 10.1124/mol.113.087247.

  30. Avigan, tablet 200 mg. Report on the deliberation results. 2014. URL: https://www.pmda.go.jp/files/000210319.pdf (date of access – 01.11.2020).

  31. Baranovich T., Wong S.S., Armstrong J. et al. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol. 2013; 87(7): 3741–51. doi: 10.1128/JVI.02346-12.

  32. Vanderlinden E., Vrancken B., Van Houdt J. et al. Distinct effects of T-705 (favipiravir) and ribavirin on influenza virus replication and viral RNA synthesis. Antimicrob Agents Chemother. 2016; 60(11): 6679–91. doi: 10.1128/AAC.01156-16.

  33. de Avila A.I., Gallego I., Soria M.E. et al. Lethal mutagenesis of hepatitis C virus induced by favipiravir. PLoS One. 2016; 11(10): e0164691. doi: 10.1371/journal.pone.0164691.

  34. Arias A., Thorne L., Goodfellow I. Favipiravir elicits antiviral mutagenesis during virus replication in vivo. Elife. 2014; 3: e03679. doi: 10.7554/eLife.03679.

  35. Wang M., Cao R., Zhang L. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30(3): 269–71. doi: 10.1038/s41422-020-0282-0.

  36. Chen С., Zhang Y., Huang J. et al. Favipiravir versus Arbidol for COVID-19: A randomized clinical trial. medRxiv. 2020. doi: 10.1101/2020.03.17.20037432.

  37. Cai Q., Yang M., Liu D. et al. Experimental treatment with favipiravir for COVID-19: An open-label control study Engineering (Beijing). 2020. doi: 10.1016/j.eng.2020.03.007.

  38. URL: https://www.fujifilm.com/jp/en/news/hq/5451 (date of access – 01.11.2020).

  39. Preliminary report of the favipiravir observational study in Japan (2020/5/15).Favipiravir Observational Study Group. URL: http://www.kansensho.or.jp/uploads/files/topics/2019ncov/covid19_casereport_en_200529.pdf (date of access – 01.11.2020).

  40. Rattanaumpawan P., Jirajariyavej S., Lerdlamyong K. et al. Real-world experience with favipiravir for treatment of COVID-19 in Thailand: Results from a multicenter observational study. medRxiv. 2020. doi: 10.1101/2020.06.24.20133249.

  41. Согласованная на глобальном уровне система классификации опасности и маркировки химической продукции (СГС). Седьмое издание, пересмотренное. ООН. Нью-Йорк и Женева. 2017. Доступ: http://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev07/Russian/ST-SG-AC10-30-Rev7r.pdf (дата обращения – 01.11.2020). [Globally harmonized system of classification and labeling of chemicals. Seventh edition, revised. UN. New York and Geneva. 2017. URL: http://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev07/Russian/ST-SG-AC10-30-Rev7r.pdf (date of access – 01.11.2020) (In Russ.)].

  42. Pilkington V., Pepperrell T., Hill A. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020; 6(2): 45–51. doi: 10.1016/S2055-6640(20)30016-9.

  43. Zhao Y., Harmatz J.S., Epstein C.R. et al. Favipiravir inhibits acetaminophen sulfate formation but minimally affects systemic pharmacokinetics of acetaminophen. Br J Clin Pharmacol. 2015; 80(5): 1076–85. doi: 10.1111/bcp.12644.

  44. Astahova A.V., Lepahin V.K. Adverse reactions and safety controls. Drug safety and pharmacovigilance. 2009; 2: 2–22.

  45. Eliseeva E.V., Feoktistova Yu.V. Analysis of pharmacotherapy in pregnant women, Drug safety and pharmacovigilance, 2009; 2: 23–28.

  46. URL: http://grls.rosminzdrav.ru/ (date of access – 01.11.2020).

  47. Балыкова Л.А. с соавт. Особенности коронавирусной инфекции COVID-19 и возможности раннего начала этиотропной терапии. Результаты клинического применения фавипиравира. Инфекционные болезни. 2020; 3: 30–40. [Balykova L.A. et al. Features of coronavirus infection COVID-19 and the possibility of early initiation of etiotropic therapy. Results of clinical use of favipiravir. Infektsionnye bolezni. 2020; 3: 30–40 (In Russ.)]. doi: 10.20953/1729-9225-2020-3-30-40.

  48. Li S., Wu Z., Li L., Liu X. Interleukin-6 (IL-6) receptor antagonist protects against rheumatoid arthritis. Med Sci Monit. 2016; 22: 2113–18. doi: 10.12659/msm.896355.

  49. Salahuddin A., Marotte H., Kwan K. et al. Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production. Proc Natl Acad Sci U S A. 2008; 105(38): 14692–97. doi: 10.1073/pnas.0802675105.

  50. URL:https://www.healio.com/rheumatology/rheumatoid-arthritis/news/online/%7B1957db6e-f7a2-4e5d-939e-d4b5964b2dd3%7D/sarilumab-enters-clinical-trial-for-covid-19-spotlighting-key-role-for-il-6 (date of access – 01.11.2020).

  51. Fox S.E., Akmatbekov A., Harbert J.L. et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020; 8(7): 681–86. doi: 10.1016/S2213-2600(20)30243-5.

  52. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13): 1239–42. doi: 10.1001/jama.2020.2648.

  53. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054–62. doi: 10.1016/S0140-6736(20)30566-3.

  54. Ortega F.B., Lavie C.J., Blair S.N. Obesity and cardiovascular disease. Circ Res. 2016; 118(11): 1752–70. doi: 10.1161/CIRCRESAHA.115.306883.

  55. Демидова Т.Ю., Волкова Е.И., Грицкевич Е.Ю. Ожирение и COVID-19: фатальная связь. Инфекционные болезни: новости, мнения, обучение. 2020; 3: 25–32. [Demidova T.Yu., Volkova E.I., Gritskevich E.Yu. Obesity and COVID-19: a fatal link. Infetsionnye bolezni: novosti, mneniya, obuchenie. 2020; 3: 25–32 (In Russ.)]. doi: https://doi.org/10.33029/2305-3496-2020-9-3S-25-32.

  56. Simonnet A., Chetboun M., Poissy J. et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS- CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020; 28(7): 1195–99. doi: 10.1002/oby.22831.

  57. Caussy C., Pattou F., Wallet F. et al. Prevalence of obesity among adult inpatients with COVID-19 in France. Lancet Diabetes Endocrinol. 2020; 8(7): 562–64. doi: 10.1016/S2213-8587(20)30160-1.

  58. Petrilli C.M., Jones S.A., Yang J. et al. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. medRxiv 2020. doi: 10.1101/2020.04.08.20057794.

  59. Samad F., Ruf W. Inflammation, obesity, and thrombosis. Blood. 2013; 122(20): 3415–22. doi: 10.1182/blood-2013-05-427708.

  60. Sindhu S., Thomas R., Shihab P. et al. Obesity is a positive modulator of IL-6R and IL-6 expression in the subcutaneous adipose tissue: significance for metabolic inflammation. PLoS One. 2015; 10(7): e0133494. doi: 10.1371/journal.pone.0133494.

  61. Pal R., Bhadada S.K. COVID-19 and diabetes mellitus: An unholy interaction of two pandemics Diabetes Metab Syndr. 2020; 14(4): 513–17. doi: 10.1016/j.dsx.2020.04.049.

  62. Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5): 846–48. doi: 10.1007/s00134-020-05991-x.

  63. Maier H.E., Lopez R., Sanchez N. et al. Obesity increases the duration of influenza A virus shedding in adults. J Infect Dis. 2018; 218(9): 1378–82. doi: 10.1093/infdis/jiy370.

  64. Di Renzo L., Gualtieri P., Pivari F. et al. Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J Transl Med. 2020; 18(1): 229. doi: 10.1186/s12967-020-02399-5.

  65. Yumuk V., Tsigos C., Fried M. et al. European guidelines for obesity management in adults. Obes Facts. 2015; 8(6): 402–24. doi: 10.1159/000442721.

  66. Дедов И.И., Трошина Е.А., Мазурина Н.В. с соавт. Роль нейротрансмиттеров в регуляции энергетического гомеостаза и возможности медикаментозной коррекции его нарушений при ожирении. Ожирение и метаболизм. 2016; 1: 9–15. [Dedov I.I., Troshina E.A., Mazurina N.V. The role of neurotransmitters in regulation of energy homeostasis and possibility of drug correction of its disturbances in obesity. Ozhirenie i metabolizm. 2016; 1: 9–15 (In Russ.)]. doi: 10.14341/omet201619-15.

  67. Романцова Т.И. Сибутрамин: эффективность и безопасность применения в рутинной клинической практике. Ожирение и метаболизм. 2015; 3: 18–24. [Romantsova T.I. Sibutramine: efficacy and safety of prescribing in routine clinical practice. Ozhirenie i metabolizm. 2015; 3: 18–24 (In Russ.)]. doi: 10.14341/omet2015318-24.

  68. Аметов А.С., Пьяных О.П., Невольникова А.О. Современные возможности управления метаболическим здоровьем у пациентов с ожирением и нарушениями углеводного обмена. Эндокринология. Новости. Мнения. Обучение. 2020; 1: 17–26. [Ametov A.S., Pyanykh O.P., Nevolnikova A.O. Modern opportunities of metabolic health management in patients with obesity and carbohydrate metabolism disorders. Endokrinologiya. Novosti. Mneniya. Obuchenie. 2020; 1: 17–26 (In Russ.)]. doi: 10.33029/2304-9529-2020-9-1-17-26.


About the Autors


Marina V. Granovskaya, PhD, associate professor of the Institute of Systems Biology, University College Dublin (Ireland), director of science at Djenguro company (Moscow). Tel: +7 (965) 121-36-45. E-mail: mgranovsk@gmail.com
Tatyana Yu. Demidova, MD, professor, head of the Department of endocrinology, faculty of general medicine of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 109263, Moscow, 4/1 Shkuleva Str. E-mail: t.y.demidova@gmail.com. ORCID: 0000-0001-6385-540X
Kira Yа. Zaslavskaya, medical manager of PROMOMED DM LLC. Address: 129090, Moscow, 13/1 Mira Prospect, office 107/2. Tel.: +7 (495) 640-25-18. E-mail: kiryonok@yandex.ru. ORCID: 0000-0002-7348-9412
Larisa A. Balykova, MD, professor, corresponding member of RAS, head of the Department of pediatrics, director of the Medical Institute of the National Research N.P. Ogarev Mordovia State University. Address: 430005, Saransk, 68 Bolshevistskaya Str. Tel.: +7 (8342) 35-30-02, fax: +7 (8342) 32-19-83. E-mail: larisabalykova@yandex.ru. ORCID: 0000-0002-2290-0013


Similar Articles


Бионика Медиа