Damage to the digestive organs in covid-19: current state of the problem


DOI: https://dx.doi.org/10.18565/therapy.2021.4.72-80

Osadchuk A.M., Loranskaya I.D., Osadchuk M.A., Stepanova E.V., Parusov A.I.

1) Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia, Moscow; 2) I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)
Abstract. According to published data, the prevalence of gastrointestinal symptoms in severe COVID-19 can be as high as 50%. In addition to direct viral exposure, the organs of the digestive tract can be exposed to drug damage against the background of systemic circulatory disorders associated with SARS-CoV2. At the same time, the diagnosis of lesions of the digestive system can be seriously delayed due to the dominance of more serious respiratory symptoms of COVID-19, which significantly worsens the course and prognosis of the underlying disease. The information presented in the review on the epidemiology, etiopathogenesis, diagnosis and treatment of lesions of the digestive tract in patients with COVID-19 significantly expands the knowledge of doctors on extrapulmonary manifestations of infection, which makes it possible to optimize management tactics and reduce the risk of adverse outcomes.

Literature



  1. Fontanesi L., Marchetti D., Mazza C. et al. The effect of the COVID-19 lockdown on parents: A call to adopt urgent measures. Psychol Trauma. 2020; 12(S1): S79–S81. doi: 10.1037/tra0000672.

  2. Mazza C., Ricci E., Marchetti D. et al. How personality relates to distress in parents during the Covid-19 lockdown: The mediating role of child’s emotional and behavioral difficulties and the moderating effect of living with other people. Int J Environ Res Public Health. 2020; 17(17): 6236. doi: 10.3390/ijerph17176236.

  3. Di Crosta A., Palumbo R., Marchetti D. et al. Individual differences, economic stability, and fear of contagion as risk factors for PTSD symptoms in the COVID-19 emergency. Front Psychol. 2020; 11: 567367. doi: 10.3389/fpsyg.2020.567367.

  4. Зольникова О.Ю., Джахая Н.Л., Поцхверашвили Н.Д. с соавт. Клинические особенности пациентов с SARS-CoV-2-инфекцией. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020; 6: 28–39. [Zolnikova O.Yu., Jakhaya N.L., Potskhverashvili N.D. et al. Clinical features of patients with SARS-CoV-2 infection. Rossiyskiy zhurnal gastroenterologii, gepatologii, koloproktologii = Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020; 6: 28–39 (In Russ.)]. doi: https://dx.doi.org/10.22416/1382-4376-2020-30-6-28-39.

  5. Walker M. Chronic liver conditions raise risk of death in COVID-19 patients. MedPage Today. November 16, 2020. URL: https://www.medpagetoday.com/meetingcoverage/aasld/89710 (date of access – 02.04.2020).

  6. Jin X., Lian J.S., Hu J.H. et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69(6): 1002–09. doi: 10.1136/gutjnl-2020-320926.

  7. Pan L., Mu M., Yang P. et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive cross-sectional multicenter study. Am J Gastroenterol. 2020; 115(5): 766–73. doi: 10.14309/ajg.0000000000000620.

  8. Cheung K.S., Ivan F.N., Hung M.D. et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology. 2020; 159(1): 81–95. doi: 10.1053/j.gastro.2020.03.065.

  9. D’Amico F., Baumgart D.C., Danese S., Peyrin-Biroulet L. Diarrhea during COVID-19 infection: Pathogenesis, epidemiology, prevention, and management. Clin Gastroenterol Hepatol. 2020; 18(8): 1663–72. doi: 10.1016/j.cgh.2020.04.001.

  10. Docherty A.B., Harrison E.M., Green C.A. et al. ISARIC4C investigators. Features of 20,133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020; 369: m1985. doi: 10.1136/bmj.m1985.

  11. Argenziano M.G., Bruce S.L., Slater C.L. et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ. 2020; 369: m1996. doi: 10.1136/bmj.m1996.

  12. Arjmand B., Ghorbani F., Koushki M. et al. Gastrointestinal symptoms in patients with mild and severe COVID-19: a scoping review and meta-analysis. Gastroenterol Hepatol Bed Bench. 2020; 13(4): 321–30.

  13. Andrews P.L.R., Cai W., Rudd J.A., Sanger G.J. COVID-19, nausea, and vomiting. J Gastroenterol Hepatol. 2021; 36(3): 646–56. doi: 10.1111/jgh.15261.

  14. Al-Ani R.M., Acharya D. Prevalence of anosmia and ageusiain patients with COVID-19 at primary Health Center, Doha, Qatar. Indian J Otolaryngol Head Neck Surg. 2020: 1–7. doi: 10.1007/s12070-020-02064-9.

  15. Hunt R.H., East J.E., Lanas A. et al. COVID-19 and gastrointestinal disease: Implications for the gastroenterologist. Dig Dis. 2021; 39(2): 119–39. doi: 10.1159/000512152.

  16. Rokkas T. Gastrointestinal involvement in COVID-19: a systematic review and meta-analysis. Ann Gastroenterol. 2020; 33(4): 355–65. doi: 10.20524/aog.2020.0506.

  17. Han C., Duan C., Zhang S. et al. Digestive symptoms in COVID-19 patients with mild disease severity: clinical presentation, stool viral RNA testing, and outcomes. Am J Gastroenterol. 2020; 115(6): 916–23. doi: 10.14309/ajg.0000000000000664.

  18. Parasa S., Desai M., Chandrasekar V.T. et al. Prevalence of gastrointestinal symptoms and fecal viral shedding in patients with coronavirus disease 2019: A systematic review and meta-analysis. JAMA Netw Open. 2020; 3(6): e2011335. doi: 10.1001/jamanetworkopen.2020.11335.

  19. Garrido I., Liberal R., Macedo G. COVID-19 and liver disease-what we know on 1st May 2020. Aliment Pharmacol Ther. 2020; 52(2): 267–75. doi:10.1111/apt.15813.

  20. Cai Q., Huang D., Yu H.et al. COVID-19: Abnormal liver function tests. J Hepatol. 2020; 73: 566–74. doi: 10.1016/j.jhep.2020.04.006.

  21. Gadour E., Hassan Z., Shrwani K. Covid-19 induced hepatitis (CIH), definition and diagnostic criteria of a poorly understood new clinical syndrome. Gut 2020; 69 (Suppl 1): A1–A51. doi: 10.47690/WJGHE.2020.3301.

  22. Wang Y., Liu S., Liu H. et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020; 73: 807–16 .doi: 10.1016/j.jhep.2020.05.002.

  23. Boettler T., Marjot T., Newsome P.N. et al. Impact of COVID-19 on the care of patients with liver disease: EASL-ESCMID position paper after 6 months of the pandemic. JHEP Rep. 2020; 2(5): 100169. doi: 10.1016/j.jhepr.2020.100169.

  24. Vespa E., Pugliese N., Piovani D. et al. Liver tests abnormalities in COVID-19: trick or treat?. J Hepatol. 2020; 73(5): 1275–76. doi: 10.1016/j.jhep.2020.05.033.

  25. Kumar A., Kumar P., Dungdung A. et al. Pattern of liver function and clinical profile in COVID-19: A cross-sectional study of 91 patients. Diabetes Metab Syndr. 2020; 14(6): 1951–54. doi: 10.1016/j.dsx.2020.10.001.

  26. Zuo T., Liu Q., Zhang F. et al. Depicting SARSCoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 2021; 70: 276–84. doi: 10.1136/gutjnl-2020-322294.

  27. 2Massironi S., Vigano C., Dioscoridi L. et al. Endoscopic findings in patients infected with 2019 novel coronavirus in Lombardy, Italy. Clin Gastroenterol Hepatol. 2020; 18(10): 2375–77. doi: 10.1016/j.cgh.2020.05.045.

  28. Inamdar S., Benias P.C., Liu Y. et al. Prevalence, risk factors, and outcomes of hospitalized patients with COVID-19 presenting as acute pancreatitis. Gastroenterology. 2020; 159(6): 2226–28.e2. doi: 10.1053/j.gastro.2020.08.044.

  29. Wang F., Wang H., Fan J. et al. Pancreatic injury patterns in patients with coronavirus disease 19 pneumonia. Gastroenterology. 2020; 159(1): 367–70. doi: 10.1053/j.gastro.2020.03.055.

  30. Tositti G., Fabris P., Barnes E.et al. Pancreatic hyperamylasemia during acute gastroenteritis: incidence and clinical relevance. BMC Infect Dis. 2001; 1(1): 18. doi: 10.1186/1471-2334-1-18.

  31. Dirweesh A., Li Y., Trikudanathan G. et al. Clinical outcomes of acute pancreatitis in patients with coronavirus disease 2019. Gastroenterology 2020; 159: 1972–74. doi: 10.1053/j.gastro.2020.07.038.

  32. Balaphas A., Gkoufa K., Meyer J. et al. Covid-19 can mimic acute cholecystitis and is associated with the presence of viral RNA in the gallbladder wall. J Hepatol. 2020; 73(6): 1566–68. doi: 10.1016/j.jhep.2020.08.020.

  33. Xiao F., Tang M., Zheng X. et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020; 158(6): 1831–33.e3. doi: 10.1053/j.gastro.2020.02.055.

  34. Connors J.M., Levy J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020; 135(23): 2033–40. doi: 10.1182/blood.2020006000.

  35. Lanas A., Dumonceau J.M., Hunt R.H. et al. Non-variceal upper gastrointestinal bleeding. Nat Rev Dis Primers. 2018; 4: 18020. doi: 10.1038/nrdp.2018.20.

  36. Zuo T., Zhang F., Lui G.C.Y. et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020; 159(3): 944–55.e8. doi: 10.1053/j.gastro.2020.05.048.

  37. Pan Y., Zhang D., Yang P. et al. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis. 2020; 20(4): 411–12. doi: 10.1016/S1473-3099 (20) 30113-4.

  38. Huizen J. (Fact checked by Alexandra Sanfins, Ph.D.) Gastrointestinal symptoms in COVID-19: What we know so far and why it is important. Medical News Today. 12 February 2021. URL: https://www.medicalnewstoday.com/articles/gastrointestinal-symptoms-in-covid-19-what-do-we-know-so-far (date of access – 02.04.2021).

  39. Yang X., Yu Y., Xu J. et al. Clinical course and outcomes of critically ill patients with SARSCoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8(5): 475–81. doi: 10.1016/S2213-2600(20)30079-5.

  40. Chan K.H., Lim S.L., Damati A. et al. Coronavirus disease 2019 (COVID-19) and ischemic colitis: An under-recognized complication. Am J Emerg Med. 2020; 38(12): 2758.e1–2758.e4. doi: 10.1016/j.ajem.2020.05.072.

  41. Levi M., Thachil J., Iba T., Levy J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020; 7(6): e438–40. doi: 10.1016/S2352-3026(20)30145-9.

  42. Farina D., Rondi P., Botturi E. et al. Gastrointestinal: bowel ischemia in a suspected coronavirus disease (COVID-19) patient. J J Gastroenterol Hepatol. 2021; 36(1): 41. doi: 10.1111/jgh.15094.

  43. Tian Y., Rong L., Nian W. Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020; 51: 843–51.

  44. Muus C., Luecken M.D., Eraslan G. et al. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv. 2020: 2020.04.19.049254. doi: 10.1101/2020.04.19.049254.

  45. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271–80.e8. doi: 10.1016/j.cell.2020.02.052.

  46. Yang L., Han Y., Nilsson-Payant B.E. et al. A human pluripotent stem cell-based platform to study SARSCoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell. 2020; 27(1): 125–136.e7. doi: 10.1016/j.stem.2020.06.015.

  47. Iavarone M., D’Ambrosio R., Soria A. et al. High rates of 30-day mortality in patients with cirrhosis and COVID-19. J Hepatol. 2020; 73(5): 1063–71. doi: 10.1016/j.jhep.2020.06.001.

  48. Puelles V.G., Lutgehetmann M., Lindenmeyer M.T. et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020; 383(6): 590–92. doi: 10.1056/NEJMc2011400.

  49. Wichmann D., Sperhake J.P., Lutgehetmann M. et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020; 173(4): 268–77. doi: 10.7326/M20-2003.

  50. Tian S., Xiong Y., Liu H. et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020; 33(6): 1007–14. doi: 10.1038/s41379-020-0536-x.

  51. Bangash M.N., Patel J.M., Parekh D. et al. SARSCoV-2: is the liver merely a bystander to severe disease? J Hepatol. 2020; 73(4): 995–96. doi: 10.1016/j.jhep.2020.05.035.

  52. Chai X., Hu L., Zhang Y. et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv. 2020.02.03.931766. doi: 10.1101/2020.02.03.931766.

  53. Zhang C., Shi L., Wang F.S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020; 5(5): 428–30. doi: 10.1016/S2468-1253(20)30057-1.

  54. Anand S., Mande S.S. Diet, microbiota and gut-lung connection. Front Microbiol. 2018; 9: 2147. doi: 10.3389/fmicb.2018.02147.

  55. Groves H.T., Higham S.L., Moffatt M.F. et al. Respiratory viral infection alters the gut microbiota by inducing inappetence. MBio. 2020; 11(1): e03236–19. doi: 10.1128/mBio.03236-19.

  56. Gu S., Chen Y., Wu Z. et al. Alterations of the gut microbiota in patients with COVID-19 or H1N1 influenza. Clin Infect Dis. 2020; 71(10): 2669–78. doi: 10.1093/cid/ciaa709.

  57. Hu Y., Lu G.-Z., Xu J. Discussion on symptoms of digestive tract caused by novel coronavirus infection. Chinese J Infect Dis 38: 2020. doi: 10.3760/cma.j.cn311365-20200220-00094.

  58. Zeng J., Wang C.T., Zhang F.S. et al. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: a randomized controlled multicenter trial. Intensive Care Med. 2016; 42(6): 1018–28. doi: 10.1007/s00134-016-4303-x.

  59. Brenner E.J., Ungaro R.C., Colombel J.F. et al. SECURE-IBD data base public data update [cited 2020 Sep 9]. Available from: covidibd.org (date of access – 02.04.2021).

  60. van Paassen J., Vos J.S., Hoekstra E.M. et al. Corticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomes. Crit Care. 2020; 24(1): 696. doi: 10.1186/s13054-020-03400-9.

  61. Brain O., Satsangi J. Therapeutic decisions in inflammatory bowel disease in the SARS-CoV-2 pandemic. 2020; 15: S0016-5085(20)34775-2. doi: 10.1053/j.gastro.2020.05.083.

  62. Cai Q., Huang D., Yu H. et al. COVID-19: Abnormal liver function tests. Journal of Hepatology. 2020; 73: 566–74. doi: 10.1016/j.jhep.2020.04.006.

  63. Lerch M.M., Saluja A.K., Dawra R. et al. The effect of chloroquine dministration on two experimental models of acute pancreatitis. Gastroenterology. 1993; 104(6): 1768–79. doi: 10.1016/0016-5085(93)91022-a.

  64. Frommeyer G., Fischer C., Ellermann C. et al. Severe proarrhythmic potential of the antiemetic agents ondansetron and domperidone. Cardiovasc Toxicol. 2017; 17(4): 451–57. doi: 10.1007/s12012-017-9403-5.

  65. Lee S.W., Ha E.K., Yeniova A.O. et al. Severe clinical outcomes of COVID-19 associated with proton pump inhibitors: a nationwide cohort study with propensity score matching. Gut. 2021; 70(1):76–84. doi: 10.1136/gutjnl-2020-322248.


About the Autors


Alexey M. Osadchuk, MD, professor, professor of the Department of gastroenterology, Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia, Moscow. Address: 123242, Moscow, 2/1 Barrikadnaya Str. Tel.: +7 (927) 606-09-40. E-mail: a.m.osadchuk2020@mail.ru. eLibrary SPIN: 9455-3982, ID 651113. ORCID: 0000-0002-8488-9235. Web of Science: Р – 9213-2015. Scopus ID: 24576966600
Irina D. Loranskaya, MD, professor, head of the Department of gastroenterology, Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia, Moscow. Address: 123242, Moscow, 2/1 Barrikadnaya Str. Tel.: +7 (903) 188-64-78. E-mail: gastromapo@yandex.ru. eLibrary SPIN: 1793-1080, ID: 370313. ORCID: 0000-0002-3681-4132. Scopus ID: 36164230100.
Mikhail A. Osadchuk, MD, professor, head of the Department of outpatient therapy, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 119435, Moscow, 2/9 Bol`shaya Pirogovskaya Str. Tel.: +7 (916) 071-26-26. E-mail: osadchuk.mikhail@yandex.ru. eLibrary SPIN: 3108-0478. ORCID: 0000-0003-0485-6802. Web of Science; В-9896-2018. Scopus ID: 6701741609
Elena V. Stepanova, PhD, associate professor, associate professor of the Department of gastroenterology, Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia, Moscow. Address: 123242, Moscow, 2/1 Barrikadnaya Str. Tel.: +7 (916) 590-35-00. E-mail: gmunden2011@yandex.ru. ORCID: 0000-0002-0657-1280
Andrey I. Parusov, assistant of the Department of gastroenterology, Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia, Moscow. Address: 123242, Moscow, 2/1 Barrikadnaya Str.
Tel.: +7 (919) 005-27-71. E-mail: andre_webster@mail.ru. eLibrary SPIN: 2181-9058. ORCID: 0000-0002-2379-0960


Similar Articles


Бионика Медиа