DOI: https://dx.doi.org/10.18565/therapy.2023.2.7-13
Abramova N.D., Soshchenko T.D., Meremyanina E.A., Solntseva V.K., Zheleznyak V.N., Svitich O.A.
1) I.I. Mechnikov Scientific Research Institute of Vaccines And Serums of the Ministry of Education and Science of Russia, Moscow; 2) I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)
1. Bortolotti D., Gentili V., Rizzo S. et al. SARS-CoV-2 spike 1 protein controls natural killer cell activation via the HLA-E/NKG2A pathway. Cells. 2020; 9(9): E1975. https://dx.doi.org/10.3390/cells9091975. 2. Li F. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res. 2013; 100(1): 246–54.https://dx.doi.org/10.1016/j.antiviral.2013.08.014. 3. Khanmohammadi S., Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. J Med Virol. 2021; 93(5): 2735–39.https://dx.doi.org/10.1002/jmv.26826. 4. Меремьянина Е.А., Свитич О.А. Иммуногенетика COVID-19. В кн.: Абрамова Н.Д., Ахматова Н.К., Бишева И.В. с соавт. Мукозальный иммунитет у пациентов с COVID-19: лечение и реабилитация. Под ред. Костинова М.П., Свитича О.А., Чучалина А.Г. М.: Группа МДВ. 2022; с. 9–26. [Meremyanina E.A., Svitich O.A. Immunogenetics of COVID-19. In: Abramova N.D., Akhmatova N.K., Bisheva I.V. et al. Mucosal immunity in patients with COVID-19: Treatment and rehabilitation. Ed. by Kostinov M.P., Svitich O.A., Chuchalin A.G. Moscow: MDV Group. 2022; pp. 9–26 (In Russ.)]. ISBN: 978-5-906748-20-1. EDN: ZVNHWK. 5. Yamamoto M., Sato S., Hemmi H. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003; 301(5633): 640–43. https://dx.doi.org/10.1126/science.1087262. 6. Velloso F.J., Trombetta-Lima M., Anschau V. et al. NOD-like receptors: Major players (and targets) in the interface between innate immunity and cancer. Bioscience Reports. 2019; 39(4): BSR20181709. https://dx.doi.org/10.1042/BSR20181709. 7. de Groot N.G., Bontrop R.E. COVID-19 pandemic: Is a gender-defined dosage effect responsible for the high mortality rate among males? Immunogenetics. 2020; 72(5): 275–77. https://dx.doi.org/10.1007/s00251-020-01165-7. 8. Kayesh M.E.H., Kohara M., Tsukiyama-Kohara K. An overview of recent insights into the response of TLR to SARS-CoV-2 infection and the potential of TLR agonists as SARS-CoV-2 vaccine adjuvants. Viruses. 2021; 13(11): 2302. https://dx.doi.org/10.3390/v13112302. 9. Choudhury A., Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol. 2020; 92(10): 2105–13. https://dx.doi.org/10.1002/jmv.25987. 10. Bastard P., Levy R., Henriquez S. et al. Interferon-β therapy in a patient with Incontinentia Pigmenti and autoantibodies against type I IFNs infected with SARS-CoV-2. J Clin Immunol. 2021; 41(5): 931–33. https://dx.doi.org/10.1007/s10875-021-01023-5. 11. Tanaka T., Narazaki M., Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014; 6(10): a016295. https://dx.doi.org/10.1101/cshperspect.a016295. 12. Rudd B.D., Smit J.J., Flavell R.A. et al. Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J Immunol. 2006; 176(3): 1937–42. https://dx.doi.org/10.4049/jimmunol.176.3.1937. 13. Poulas K., Farsalinos K., Zanidis C. Activation of TLR7 and innate immunity as an efficient method against COVID-19 pandemic: Imiquimod as a potential therapy. Front Immunol. 2020; 11: 1373. https://dx.doi.org/10.3389/fimmu.2020.01373. 14. Said E.A., Tremblay N., Al-Balushi M.S. et al. Viruses seen by our cells: The role of viral RNA sensors. J Immunol Res. 2018; 2018: 9480497. https://dx.doi.org/10.1155/2018/9480497. 15. Swiecki M., Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015; 15(8): 471–85.https://dx.doi.org/10.1038/nri3865. 16. Kikkert M. Innate immune evasion by human respiratory RNA viruses. J Innate Immun. 2020; 12(1): 4–20.https://dx.doi.org/10.1159/000503030. 17. Nguyen H., Gazy N., Venketaraman V. A role of intracellular Toll-like receptors (3, 7, and 9) in response to Mycobacterium tuberculosis and co-infection with HIV. Int J Mol Sci. 2020; 21(17): E6148. https://dx.doi.org/10.3390/ijms21176148. 18. Alturaiki W., Alkadi H., Alamri S. et al. Association between the expression of toll-like receptors, cytokines, and homeostatic chemokines in SARS-CoV-2 infection and COVID-19 severity. Heliyon. 2023; 9(1): e12653.https://dx.doi.org/10.1016/j.heliyon.2022.e12653. 19. Mohanty M.C., Varose S.Y., Sawant U.P., Fernandes M.M. Expression of innate immune response genes in upper airway samples of SARS-CoV-2 infected patients: A preliminary study. Indian J Med Res. 2021; 153(5&6): 677–83.https://dx.doi.org/10.4103/ijmr.IJMR_131_21. 20. de la Rica R., Borges M., Gonzalez-Freire M. COVID-19: In the eye of the cytokine storm. Front Immunol. 2020; 11: 558898.https://dx.doi.org/10.3389/fimmu.2020.558898. 21. Moreno-Eutimio M.A., Lopez-Macias C., Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020; 22(4): 226–29. https://dx.doi.org/10.1016/j.micinf.2020.04.009. 22. Schmitz M.L., Kracht M., Saul V.V. The intricate interplay between RNA viruses and NF-κB. Biochim Biophys Acta. 2014; 1843(11): 2754–64. https://dx.doi.org/10.1016/j.bbamcr.2014.08.004. 23. Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017; 2: 17023.https://dx.doi.org/10.1038/sigtrans.2017.23. 24. Takaoka A., Yamada T. Regulation of signaling mediated by nucleic acid sensors for innate interferon-mediated responses during viral infection. Int Immunol. 2019; 31(8): 477–88. https://dx.doi.org/10.1093/intimm/dxz034. 25. Yanai H., Chiba S., Hangai S. et al. Revisiting the role of IRF3 in inflammation and immunity by conditional and specifically targeted gene ablation in mice. Proc Natl Acad Sci U S A. 2018; 115(20): 5253–58. https://dx.doi.org/10.1073/pnas.1803936115. 26. Totura A.L., Whitmore A., Agnihothram S. et al. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio. 2015; 6(3): e00638-00615.https://dx.doi.org/10.1128/mBio.00638-15. 27. Nature Immunology. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.URL: https://www.nature.com/articles/ni.1863 (date of access – 23.09.2022). 28. Han L., Zhuang M.W., Deng J. et al. SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways. J Med Virol. 2021; 93(9): 5376–89.https://dx.doi.org/10.1002/jmv.27050.
Natalya D. Abramova, junior researcher at the Laboratory of molecular immunology, I.I. Mechnikov Scientific Research Institute of Vaccines and Serums of the Ministry of Education and Science of Russia. Address: 105064, Moscow, 5A Maly Kazenny Lane. E-mail: and960911@gmail.com. ORCID: https://orcid.org/0000-0002-7307-0515
Tala D. Soshchenko, laboratory researcher at the Laboratory of molecular immunology, I.I. Mechnikov Scientific Research Institute of Vaccines and Serums of the Ministry of Education and Science of Russia. Address: 105064, Moscow, 5A Maly Kazenny Lane. E-mail: talasoschenko17@gmail.com. ORCID: https://orcid.org/0009-0000-1665-7734
Ekaterina A. Meremyanina, researcher at the laboratory of molecular immunology, I.I. Mechnikov Scientific Research Institute of Vaccines and Serums of the Ministry of Education and Science of Russia. Address: 105064, Moscow, 5A Maly Kazenny Lane. E-mail: ekaterina@meremianina.ru. ORCID: https://orcid.org/0000-0003-4334-1473
Victoria K. Solntseva, PhD in Medical Sciences, senior lecturer at the Department of microbiology, virology and immunology named after academician A.A. Vorobyov, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 119991, Moscow, 8/2 Trubetskaya Str. E-mail: speech_to_vika@mail.ru. ORCID: https://orcid.org/0000-0003-3783-9232
Vadim N. Zheleznyak, PhD in Medical Sciences, senior researcher at the Laboratory for epidemiological analysis and monitoring of infectious diseases, I.I. Mechnikov Scientific Research Institute of Vaccines and Serums of the Ministry of Education and Science of Russia. Address: 105064, Moscow, 5A Maly Kazenny Lane. E-mail: vng150@mail.ru.
Oksana A. Svitich, MD, professor of RAS, corresponding member of RAS, professor of the Department of microbiology, virology and immunology named after academician A.A. Vorobyov of F.F. Erisman Institute of Public Health of
I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University), director of I.I. Mechnikov Scientific Research Institute of Vaccines and Serums of the Ministry of Education and Science of Russia. Address: 105064, Moscow, 5A Maly Kazenny Lane. E-mail: svitichoa@yandex.ru.
ORCID: https://orcid.org/0000-0003-1757-8389