Pathogenesis of virus-induced inflammation: From theory to development and implementation of a new paradigm of medicinal remedies


DOI: https://dx.doi.org/10.18565/therapy.2024.7.154-164

Ostroumova O.D., Dubinina A.V., Telkova S.S., Gavrilova N.E., Sinitsina I.I., Malyavin A.G.

1) Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia, Moscow; 2) I.M. Sechenov First Moscow Medical University of the Ministry of Healthcare of Russia (Sechenov university); 3) Scandinavian Health Center LLC, Moscow; 4) Russian University of Medicine of the Ministry of Healthcare of Russia, Moscow
Abstract. Incidence of acute respiratory viral infections (ARVI) is rapidly increasing and often accompanied by the development of compli­cations and an increase of the number of hospitalizations. Virus-induced inflammation is characterized by contamination of endothelial cells with the development of their pathological activation, as well as increased production of cytokines, which causes structural tissue damage and accelerates viral spreading. To counteract this, XC221GI medicine with selective antichemokine action was developed. It prevents the development of hyperinflammatory immune response, reduces the viral load and leads to acceleration of ARVI resolving and to improved prognosis in the whole. The prescription of this drug does not require molecular diagnostics of a specific virus due to the similarity of immune-mediated inflammatory pathways during infection with various pathogens, and the mechanism of action does not limit its use in combination with traditional antiviral drugs, which allows us to consider XC221GI as a drug of choice in patients with ARVI.

Literature


1. World Health Organization. Vaccines against influenza: WHO position paper – May 2022. Weekly Epidemiological Record. 2022; 19(97): 185–208.


2. Paget J., Staadegaard L., Wang X. et al. Global and national influenza-associated hospitalisation rates: Estimates for 40 countries and administrative regions. J Glob Health. 2023; 13: 04003.


https://doi.org/10.7189/jogh.13.04003. PMID: 36701368. PMCID: PMC9879557.


3. Здравоохранение в России, 2023: статистический сборник. М.: Росстат. 2023: 171. Доступ: https://rosstat.gov.ru/storage/mediabank/Zdravooxran_2023.htm (дата обращения – 16.09.2024) (Healthcare in Russia, 2023: Statistical collection. Moscow: Federal State Statistics Service (Russia). 2023: 171. URL: https://rosstat.gov.ru/storage/mediabank/Zdravooxran_2023.htm (date of access – 16.09.2024) (In Russ.)).


4. Iuliano A.D., Roguski K.M., Chang H.H. et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet. 2018; 391(10127): 1285–300.


https://doi.org/10.1016/s0140-6736(17)33293-2. PMID: 29248255. PMCID: PMC5935243.


5. World Health Organization. WHO COVID-19 dashboard. URL: https://covid19.who.int (date of access – 16.09.2024).


6. Lotfi M., Hamblin M.R., Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta. 2020; 508: 254–66.


https://doi.org/10.1016/j.cca.2020.05.044. PMID: 32474009. PMCID: PMC7256510.


7. Varshney K., Pillay P., Mustafa A.D. et al. A systematic review of the clinical characteristics of influenza-COVID-19 co-infection. Clin Exp Med. 2023; 23(7): 3265–75.


https://doi.org/10.1007/s10238-023-01116-y. PMID: 37326928. PMCID: PMC10618381.


8. Tyrrell C.S., Allen J.L.Y., Gkrania-Klotsas E. Influenza: Epidemiology and hospital management. Medicine (Abingdon). 2021; 49(12): 797–804.


https://doi.org/10.1016/j.mpmed.2021.09.015. PMID: 34849086. PMCID: PMC8624711.


9. Клинические рекомендации. Острые респираторные вирусные инфекции (ОРВИ) у взрослых. Некоммерческое партнерство «Национальное научное общество инфекционистов», Общероссийская общественная организация «Российское научное медицинское общество терапевтов». Рубрикатор клинических рекомендаций Минздрава России. 2021. ID: 724. Доступ: https://cr.minzdrav.gov.ru/schema/724_1 (дата обращения – 16.09.2024). (Clinical guidelines. Acute respiratory viral infections (ARVI) in adults. National Scientific Society of Infectious Diseases, Russian Scientific Medical Society of Internal Medicine. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2021. ID: 724. URL: https://cr.minzdrav.gov.ru/schema/724_1 (date of access – 16.09.2024) (In Russ.)).


10. Sellers S.A., Hagan R.S., Hayden F.G., Fischer W.A. 2nd. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses. 2017; 11(5): 372–93.


https://doi.org/10.1111/irv.12470. PMID: 28745014. PMCID: PMC5596521.


11. Walsh E.E., Cox C., Falsey A.R. Clinical features of influenza A virus infection in older hospitalized persons. J Am Geriatr Soc. 2002; 50(9): 1498–503.


https://doi.org/10.1046/j.1532-5415.2002.50404.x. PMID: 12383146.


12. Thompson W.W., Shay D.K., Weintraub E. et al. Influenza-associated hospitalizations in the United States. JAMA. 2004; 292(11): 1333–40.


https://doi.org/10.1001/jama.292.11.1333. PMID: 15367555.


13. Neuzil K.M., Reed G.W., Mitchel E.F. et al. Impact of influenza on acute cardiopulmonary hospitalizations in pregnant women. Am J Epidemiol. 1998; 148(11): 1094–102.


https://doi.org/10.1093/oxfordjournals.aje.a009587. PMID: 9850132.


14. Van Kerkhove M.D., Vandemaele K.A.H., Shinde V. et al.; WHO Working Group for Risk Factors for Severe H1N1pdm Infection. Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: A global pooled analysis. PLoS Med. 2011; 8(7): e1001053.


https://doi.org/10.1371/journal.pmed.1001053. PMID: 21750667. PMCID: PMC3130021.


15. Karlsson E.A., Meliopoulos V.A., van de Velde N.C. et al. A perfect storm: Increased colonization and failure of vaccination leads to severe secondary bacterial infection in influenza virus-infected obese mice. mBio. 2017; 8(5): e00889-17.


https://doi.org/10.1128/mbio.00889-17. PMID: 28928207. PMCID: PMC5605935.


16. Langer J., Welch V.L., Moran M.M. et al. The cost of seasonal influenza: A systematic literature review on the humanistic and economic burden of influenza in older (≥ 65 years old) adults. Adv Ther. 2024; 41(3): 945–66.


https://doi.org/10.1007/s12325-023-02770-0. PMID: 38261171. PMCID: PMC10879238.


17. Wille M., Holmes E.C. The ecology and evolution of influenza viruses. Cold Spring Harb Perspect Med. 2020; 10(7): a038489.


https://doi.org/10.1101/cshperspect.a038489. PMID: 31871237. PMCID: PMC7328453.


18. Camp J.V., Jonsson C.B. A role for neutrophils in viral respiratory disease. Front Immunol. 2017; 8: 550.


https://doi.org/10.3389/fimmu.2017.00550. PMID: 28553293. PMCID: PMC5427094.


19. Griffin D.O., Brennan-Rieder D., Ngo B. et al. The importance of understanding the stages of COVID-19 in treatment and trials. AIDS Rev. 2021; 23(1): 40–47.


https://doi.org/10.24875/aidsrev.200001261. PMID: 33556957.


20. Han T., Lai Y., Jiang Y. et al. Influenza A virus infects pulmonary microvascular endothelial cells leading to microvascular leakage and release of pro-inflammatory cytokines. PeerJ. 2021; 9: e11892.


https://doi.org/10.7717/peerj.11892. PMID: 34414033. PMCID: PMC8344683.


21. Gawrysiak M., Gajewski A., Szewczyk R. et al. Human rhinovirus HRV16 impairs barrier functions and regeneration of human lung vascular endothelium. Allergy. 2021; 76(6): 1872–75.


https://doi.org/10.1111/all.14671. PMID: 33247950.


22. Jaffe E.A. Cell biology of endothelial cells. Hum Pathol. 1987; 18(3): 234–39.


https://doi.org/10.1016/s0046-8177(87)80005-9. PMID: 3546072.


23. Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016; 14(8): e1002533.


https://doi.org/10.1371/journal.pbio.1002533. PMID: 27541692. PMCID: PMC4991899.


24. Fosse J.H., Haraldsen G., Falk K., Edelmann R. Endothelial cells in emerging viral infections. Front Cardiovasc Med. 2021; 8: 619690.


https://doi.org/10.3389/fcvm.2021.619690. PMID: 3371844.8 PMCID: PMC7943456.


25. Aird W.C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007; 100(2): 174–90.


https://doi.org/10.1161/01.res.0000255690.03436.ae. PMID: 17272819.


26. Каде А.Х., Занин С.А., Губарева Е.А. с соавт. Физиологические функции сосудистого эндотелия. Фундаментальные исследования. 2011; (11-3): 611–617. (Kade A.Kh., Zanin S.A., Gubareva E.A. et al. Physiological functions vascular endothelium. Fundamental’nye issledovaniya = Fundamental Research. 2011; (11-3): 611–617 (In Russ.)). EDN: OUKVFJ.


27. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the 'Cytokine Storm’ in COVID-19. J Infect. 2020; 80(6): 607–13.


https://doi.org/10.1016/j.jinf.2020.03.037. PMID: 32283152. PMCID: PMC7194613.


28. Weinbaum S., Tarbell J.M., Damiano E.R. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007; 9: 121–67.


https://doi.org/10.1146/annurev.bioeng.9.060906.151959. PMID: 17373886.


29. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417–18.


https://doi.org/10.1016/s0140-6736(20)30937-5. PMID: 32325026. PMCID: PMC7172722.


30. Colmenero I., Santonja C., Alonso-Riano M. et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: Histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br J Dermatol. 2020; 183(4): 729–37.


https://doi.org/10.1111/bjd.19327. PMID: 32562567. PMCID: PMC7323219.


31. Chałubinski M., Szulc A., Pawełczyk M. et al. Human rhinovirus 16 induces antiviral and inflammatory response in the human vascular endothelium. APMIS. 2021; 129(3): 143–51.


https://doi.org/10.1111/apm.13103. PMID: 33230840.


32. Cline T.D., Beck D., Bianchini E. Influenza virus replication in macrophages: Balancing protection and pathogenesis. J Gen Virol. 2017; 98(10): 2401–12.


https://doi.org/10.1099/jgv.0.000922. PMID: 28884667. PMCID: PMC5725990.


33. Laza-Stanca V., Stanciu L.A., Message S.D. et al. Rhinovirus replication in human macrophages induces NF-kappaB-dependent tumor necrosis factor alpha production. J Virol. 2006; 80(16): 8248–58.


https://doi.org/10.1128/jvi.00162-06. PMID: 16873280. PMCID: PMC1563804.


34. Li H., Wang A., Zhang Y., Wei F. Diverse roles of lung macrophages in the immune response to influenza A virus. Front Microbiol. 2023; 14: 1260543.


https://doi.org/10.3389/fmicb.2023.1260543. PMID: 37779697. PMCID: PMC10534047.


35. Callahan V., Hawks S., Crawford M.A. et al. The pro-inflammatory chemokines CXCL9, CXCL10 and CXCL11 are upregulated following SARS-CoV-2 infection in an AKT-dependent manner. Viruses. 2021; 13(6): 1062.


https://doi.org/10.3390/v13061062. PMID: 34205098. PMCID: PMC8226769.


36. Ichikawa A., Kuba K., Morita M. et al. CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am J Respir Crit Care Med. 2013; 187(1): 65–77.


https://doi.org/10.1164/rccm.201203-0508oc. PMID: 23144331. PMCID: PMC3927876.


37. Coperchini F., Chiovato L., Ricci G. et al. The cytokine storm in COVID-19: Further advances in our understanding the role of specific chemokines involved. Cytokine Growth Factor Rev. 2021; 58: 82–91.


https://doi.org/10.1016/j.cytogfr.2020.12.005. PMID: 33573850. PMCID: PMC7837329.


38. Coperchini F., Chiovato L., Rotondi M. Interleukin-6, CXCL10 and infiltrating macrophages in COVID-19-related cytokine storm: Not one for all but all for one! Front Immunol. 2021; 12: 668507.


https://doi.org/10.3389/fimmu.2021.668507. PMID: 33981314. PMCID: PMC8107352.


39. Kearley J., Silver J.S., Sanden C. et al. Cigarette smoke sILences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity. 2015; 42(3): 566–79.


https://doi.org/10.1016/j.immuni.2015.02.011. PMID: 25786179.


40. Sethi S., Murphy T.F. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008; 359(22): 2355–65.


https://doi.org/10.1056/nejmra0800353. PMID: 19038881.


41. Mohan A., Chandra S., Agarwal D. et al. Prevalence of viral infection detected by PCR and RT-PCR in patients with acute exacerbation of COPD: A systematic review. Respirology. 2010; 15(3): 536–42.


https://doi.org/10.1111/j.1440-1843.2010.01722.x. PMID: 20415983. PMCID: PMC7192224.


42. De Serres G., Lampron N., La Forge J. et al. Importance of viral and bacterial infections in chronic obstructive pulmonary disease exacerbations. J Clin Virol. 2009; 46(2): 129–33.


https://doi.org/10.1016/j.jcv.2009.07.010. PMID: 19665425. PMCID: PMC7108387.


43. Teijaro J.R. The role of cytokine responses during influenza virus pathogenesis and potential therapeutic options. Curr Top Microbiol Immunol. 2015; 386: 3–22.


https://doi.org/10.1007/82_2014_411. PMID: 25267464.


44. Dienz O., Rud J.G., Eaton S.M. et al. Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal Immunol. 2012; 5(3): 258–66.


https://doi.org/10.1038/mi.2012.2. PMID: 22294047. PMCID: PMC3328598.


45. Lauder S.N., Jones E., Smart K. et al. Interleukin-6 limits influenza-induced inflammation and protects against fatal lung pathology. Eur J Immunol. 2013; 43(10): 2613–25.


https://doi.org/10.1002/eji.201243018. PMID: 23857287. PMCID: PMC3886386.


46. Kermali M., Khalsa R.K., Pillai K. et al. The role of biomarkers in diagnosis of COVID-19 – A systematic review. Life Sci. 2020; 254: 117788.


https://doi.org/10.1016/j.lfs.2020.117788. PMID: 32475810. PMCID: PMC7219356.


47. Petrilli C.M., Jones S.A., Yang J. et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ. 2020; 369: m1966.


https://doi.org/10.1136/bmj.m1966. PMID: 32444366. PMCID: PMC7243801.


48. Tordjman M., Mekki A., Mali R.D. et al. Determining extent of COVID-19 pneumonia on CT based on biological variables. Respir Med. 2020; 175: 106206.


https://doi.org/10.1016/j.rmed.2020.106206. PMID: 33166904. PMCID: PMC7644196.


49. Coomes E.A., Haghbayan H. Interleukin-6 in Covid-19: A systematic review and meta-analysis. Rev Med Virol. 2020; 30(6): 1–9.


https://doi.org/10.1002/rmv.2141. PMID: 32845568. PMCID: PMC7460877.


50. Yin J.-X., Agbana Y.L., Sun Z.S. et al. Increased interleukin-6 is associated with long COVID-19: A systematic review and meta-analysis. Infect Dis Poverty. 2023; 12(1): 43.


https://doi.org/10.1186/s40249-023-01086-z. PMID: 37095536. PMCID: PMC10123579.


51. Sen S., Singh B., Biswas G. Corticosteroids: A boon or bane for COVID-19 patients? Steroids. 2022; 188: 109102.


https://doi.org/10.1016/j.steroids.2022.109102. PMID: 36029810. PMCID: PMC9400384.


52. RECOVERY Collaborative Group; Horby P., Lim W.S., Emberson J.R. et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021; 384(8): 693–704.


https://doi.org/10.1056/nejmoa2021436.


53. Matthay M.A., Wick K.D. Corticosteroids, COVID-19 pneumonia, and acute respiratory distress syndrome. J Clin Invest. 2020; 130(12): 6218–21.


https://doi.org/10.1056/nejmoa2021436. PMID: 32678530. PMCID: PMC7383595.


54. Monreal E., de la Maza S.S., Natera-Villalba E. et al.; COVID-HRC group. High versus standard doses of corticosteroids in severe COVID-19: A retrospective cohort study. Eur J Clin Microbiol Infect Dis. 2021; 40(4): 761–69.


https://doi.org/10.1007/s10096-020-04078-1. PMID: 33083917. PMCID: PMC7575217.


55. Романцов М.Г., Ершов Ф.И., Коваленко А.Л. Противовирусные препараты для лечения ОРВИ и гриппа у детей (клинический обзор). Фундаментальные исследования. 2010; (9): 76–87. (Romantsov M.G., Ershov F.I., Kovalenko A.L. Antiviral drugs for the treatment of acute respiratory viral infections and influenza in children (clinical review). Fundamental’nye issledovaniya = Fundamental Research. 2010; (9): 76–87 (In Russ.)). EDN: LSZUJG.


56. Мизерницкий Ю.Л. Дифференциальная диагностика и дифференцированная терапия острой бронхиальной обструкции при ОРВИ у детей раннего возраста. Практическая медицина. 2014; (9): 82–88. (Mizernitskiy Yu.L. Differential diagnostics and differentiated therapy of acute bronchial obstruction during ARVI in young children. Prakticheskaja meditsina = Practical Medicine. 2014; (9): 82–88 (In Russ.)). EDN: TAMUHV.


57. Usher A.D. The global COVID-19 treatment divide. Lancet. 2022; 399(10327): 779–82.


https://doi.org/10.1016/s0140-6736(22)00372-5. PMID: 35219388. PMCID: PMC8871493.


58. Azh N., Barzkar F., Motamed-Gorji N. et al. Nonsteroidal anti-inflammatory drugs in acute viral respiratory tract infections: An updated systematic review. Pharmacol Res Perspect. 2022; 10(2): e00925.


https://doi.org/10.1002/prp2.925. PMID: 35218614. PMCID: PMC8881905.


59. Malik I., Kovac G., Padrtova T., Hudecova L. Ingavirin might be a promising agent to combat Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2). Ceska Slov Farm. 2020; 69(3): 107–11. PMID: 32972153.


60. Globenko A.A., Kuzin G.V., Rydlovskaya A.V. et al. Curtailing virus-induced inflammation in respiratory infections: Emerging strategies for therapeutic interventions. Front Pharmacol. 2023; 14: 1087850.


https://doi.org/10.3389/fphar.2023.1087850. PMID: 37214455. PMCID: PMC10196389.


61. Суханова С.А., Проскурина О.В., Джайн Е.А. с соавт. Доклиническое исследование токсикологического профиля нового соединения XC221GI. Эпидемиология и инфекционные болезни. 2021; 26(5): 200–213. (Sukhanova S.A., Proskurina O.V., Jain E.A. et al. Toxicity profile of the new compound XC221GI from pre-clinical studies. Epidemiologiya i infektsionnye bolezni = Epidemiology and Infectious Diseases. 2021; 26(5): 200–213 (In Russ.)).


https://doi.org/10.17816/EID108910. EDN: RUCUJH.


62. Стукова М.А., Рыдловская А.В., Проскурина О.В. с соавт. Фармакодинамическая активность нового соединения XC221GI в in vitro и in vivo моделях вирусного воспаления респираторного тракта. Microbiology Independent Research Journal. 2022; 9(1): 56–70. (Stukova M.A., Rydlovskaya A.V., Proskurina O.V. et al. In vitro and in vivo pharmacodynamic activity of the new compound XC221GI in models of the viral inflammation of the respiratory tract. Microbiology Independent Research Journal. 2022; 9(1): 56–70 (In Russ.)).


https://doi.org/10.18527/2500-2236-2022-9-1-56-70.ru. EDN: NQNJRK.


63. Горелов А.В., Калюжин О.В., Багаева М.И. Новые возможности упреждающей противовоспалительной терапии пациентов со среднетяжелой и тяжелой формой COVID-19. Терапевтический архив. 2022; 94(7): 872–875. (Gorelov A.V., Kalyuzhin O.V., Bagaeva M.I. New opportunities for preventive anti-inflammatory therapy in the management of patients with moderate and severe COVID-19. Terapevticheskiy arkhiv = Therapeutic Archive. 2022; 94(7): 872–875 (In Russ.)).


https://doi.org/10.26442/00403660.2022.07.201729. EDN: VJHZPJ.


64. Калюжин О.В., Баранова А., Багаева М.И. Стратегия управления вирус-индуцированным воспалением при COVID-19. Результаты многоцентрового адаптивного рандомизированного двойного слепого плацебо-контролируемого исследования у амбулаторных пациентов. Инфекционные болезни. 2023; 21(1): 26–35. (Kalyuzhin O.V., Baranova A., Bagaeva M.I. Management strategy for virus-induced inflammation in COVID-19. Results of a multicenter, adaptive, randomized, double-blind, placebo-controlled study in outpatients. Infektsionnye bolezni = Infectious Diseases. 2023; 21(1): 26–35 (In Russ.)).


https://doi.org/10.20953/1729-9225-2023-1-26-34. EDN: WUYRNT.


65. Малявин А.Г., Багаева М.И., Калюжин О.В. Применение ХС221GI в лечении гриппа и ОРВИ у взрослых: новый подход – управление вирус-индуцированным воспалением. Результаты двойного слепого рандомизированного плацебо-контролируемого многоцентрового клинического исследования. Терапевтический архив. 2023; 95(12): 1165–1171. (Malyavin A.G., Bagaeva M.I., Kalyuzhin O.V. Application of HS221GI in treatment of influenza and ARVI in adults: A new approach – managing virus-induced inflammation. Results of a double-blind, randomized, placebo-controlled, multicenter clinical trial. Terapevticheskiy arkhiv = Therapeutic Archive. 2023; 95(12): 1165–1171 (In Russ.)).


https://doi.org/10.26442/00403660.2023.12.202554. EDN: JBOADP.


About the Autors


Olga D. Ostroumova, MD, Dr. Sci. (Medicine), professor, head of the Department of therapy and polymorbid pathology named after academician M.S. Vovsi, Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia, professor of the Department of clinical pharmacology and propaedeutics of internal diseases, I.M. Sechenov First Moscow Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 125993, Moscow, 2/1, build. 1 Barrikadnaya St.
E-mail: ostroumova.olga@mail.ru
ORCID: http://orcid.org/0000-0002-0795-8225
Svetlana S. Telkova, MD, 1st year postgraduate student, senior laboratory assistant at the Department of therapy and polymorbid pathology named after academician M.S. Vovsi, Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia. Address: 125993, Moscow, 2/1, build. 1 Barrikadnaya St.
ORCID: http://orcid.org/0000-0003-1439-7371
E-mail: svetlana.t03@yandex.ru
Anna V. Dubinina, MD, 2nd year postgraduate student of the Department of therapy and polymorbid pathology named after academician M.S. Vovsi, Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia. Address: 125993, Moscow, 2/1, build. 1 Barrikadnaya St.
E-mail: dubinina_anna2023@mail.ru
ORCID: http://orcid.org/0009-0008-6383-0016
Natalya E. Gavrilova, MD, Dr. Sci. (Medicine), professor of the Department of therapy and polymorbid pathology named after Academician M.S. Vovsi, Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia, general director – chief physician of Scandinavian Health Center LLC. Address: 125993, Moscow, 2/1, build. 1 Barrikadnaya St.
E-mail: natysja2004@yandex.ru
ORCID: http://orcid.org/0000-0003-4624-9189
Irina I. Sinitsina, MD, Dr. Sci. (Medicine), associate professor, professor of the Department of clinical pharmacology and therapy, Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia. Address: 125993, Moscow, 2/1, build. 1 Barrikadnaya St.
E-mail: sinitsina-irina@mail.ru
ORCID: https://orcid.org/0000-0002-9177-6642
Andrey G. Malyavin, MD, Dr. Sci. (Medicine), professor, professor of the Department of phthisiology and pulmonology of the Faculty of general medicine, Russian University of Medicine of the Ministry of Healthcare of Russia, general secretary of the Russian Scientific Medical Society of Internal Medicine (RSMSIM), chief consultant specialist – pulmonologist of the Ministry of Healthcare of Russia for the Central Federal District. Address: 107150, Moscow, 39, build. 2 Losinoostrovskaya St.
E-mail: maliavin@mail.ru
ORCID: https://orcid.org/0000-0002-6128-5914


Similar Articles


Бионика Медиа