Actuality and perspectives of practical use of laboratory biomarkers for multiple sclerosis clinical course


DOI: https://dx.doi.org/10.18565/therapy.2023.5.71-76

Elchaninova E.Yu., Afanasyeva A.I., Smagina I.V., Elchaninova S.A.

Altai State Medical University of the Ministry of Healthcare of Russia, Barnaul
Abstract. Laboratory indexes representing the pathogenesis of multiple sclerosis (MS) may become earlier and more dynamic biomarkers of disease activity and progression, as well as individual response to treatment, comparatively with clinical and radiological characteristics of the patient’s clinical status. At the same time, the heterogeneity of research design and methods for laboratory markers determining makes it difficult to make meta-analysis of numerous studies. The aim of this article is a descriptive analytical review of publications over the last 30 years on the most promising potential biomarkers of the course of MS in eLibrary, PubMed databases. In order to introduce laboratory biomarkers of the course of MS into practice, further studies are needed, the analysis of which can allow the development of convincing and evidence-based clinical recommendations with the characteristics of sensitivity, specificity of laboratory biomarkers, prognostic values and boundaries for their levels for making a clinical decision.

Literature


1. Завалишин И.А., Пирадов М.А., Бойко А.Н. с соавт. Аутоиммунные заболевания в неврологии. Клиническое руководство. Т.1. М.: Общероссийский общественный фонд «Здоровье человека». 2014; 400 с. [Zavalishin I.A., Piradov M.A., Boyko A.N. et al. utoimmune diseases in neurology. Clinical guide. Vol. 1. Moscow: Human Health. 2014; 400 pp. (In Russ.)]. EDN: TVNABF.


2. Клинические рекомендации. Рассеянный склероз. Всероссийское общество неврологов, Национальное общество нейрорадиологов, Медицинская ассоциация врачей и центров рассеянного склероза и других нейроиммунологических заболеваний, Российский комитет исследователей рассеянного склероза. Рубрикатор клинических рекомендаций Минздрава России. 2022. ID: 739. Доступ: https://cr.minzdrav.gov.ru/schema/739_1 (дата обращения – г01.06.2023). [Clinical guidelines. Multiple sclerosis. All-Russian Society of Neurologists, National Society of Neuroradiologists, Medical Association of Physicians and Centers for Multiple Sclerosis and Other Neuroimmunological Diseases, Russian Committee of Multiple Sclerosis Researchers. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2022. ID: 739. URL: https://cr.minzdrav.gov.ru/schema/739_1 (date of access – 01.06.2023) (In Russ.)].


3. Thompson A.J., Banwell B.L., Barkhof F. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018; 17(2): 162–73. https://dx.doi.org/10.1016/S1474-4422(17)30470-2.


4. Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983; 33(11): 1444–52. https://dx.doi.org/10.1212/wnl.33.11.1444.


5. Шмидт Т.Е., Яхно Н.Н. Рассеянный склероз: от патогенеза к через клинику к лечению. М.: МЕДпресс-информ. 2021; 368 с. [Shmidt T.E., Yahno N.N. Multiple sclerosis: from pathogenesis to through the clinic to treatment. Moscow: MEDpress-inform. 2021; 368 pp. (In Russ.)]. ISBN: 978-5-00030-894-3.


6. Adamczyk-Sowa M., Adamczyk B., Kułakowska A. et al. Secondary progressive multiple sclerosis – from neuropathology to definition and effective treatment. Neurol Neurochirurgia Pol. 2020; 54(5): 384–98. https://dx.doi.org/10.5603/PJNNS.a2020.0082.


7. Nishihara H., Perriot S., Gastfriend B.D. et al. Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain. 2022; 145(12): 4334–48. https://dx.doi.org/10.1093/brain/awac019


8. Correale J., Farez M.F. The role of astrocytes in multiple sclerosis progression. Front Neurol. 2015; 6: 180. https://dx.doi.org/10.3389/fneur.2015.00180.


9. Trivino J.J., von Bernhardi R. The effect of aged microglia on synaptic impairment and its relevance in neurodegenerative diseases. Neurochem Intl. 2021; 144: 104982. https://dx.doi.org/10.1016/j.neuint.2021.104982.


10. Frohman E.M., Racke M.K., Raine C.S. Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med. 2006; 354(9): 942–55. https://dx.doi.org/10.1056/NEJMra052130.


11. Comi G., Bar-Or A., Lassmann H. et al.; Expert Panel of the 27th Annual Meeting of the European Charcot Foundation. Role of B cells in multiple sclerosis and related disorders. Ann Neurol. 2021; 89(1): 13–23. https://dx.doi.org/10.1002/ana.25927.


12. Zivadinov R., Ramasamy D., Vaneckova M. et.al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: A retrospective, pilot, observational longitudinal study. Mult Scler. 2016; 23(10): 1336–45. https://dx.doi.org/10.1177/1352458516678083.


13. Елисеева Д.Д., Захарова М.Н. Механизмы нейродегенерации при рассеянном склерозе. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022; 122(7–2): 5–13. [Eliseeva D.D., Zakharova M.N. Mechanisms of Neurodegeneration in Multiple Sclerosis. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2022; 122(7–2): 5–13 (In Russ.)]. https://dx.doi.org/10.17116/jnevro20221220725. EDN: IEDSCQ.


14. Yong H., Yong V.W. Mechanism-based criteria to improve therapeutic out-comes in progressive multiple sclerosis. Nat Rev Neurol. 2022; 18(1): 40–55. https://dx.doi.org/10.1038/s41582-021-00581-x.


15. Lassmann H. Mechanisms of white matter damage in multiple sclerosis. Glia. 2014; 62(11): 1816–30. https://dx.doi.org/10.1002/glia.22597.


16. Correale J., Gaitan M.I., Ysrraelit M.C., Fiol M.P. Progressive multiple sclerosis: From pathogenic mechanisms to treatment. Brain. 2017; 140(3): 527–46. https://dx.doi.org/10.1093/brain/aww258.


17. Sun M., Liu N., Xie Q. et.al. A candidate biomarker of glial fibrillary acidic protein in CSF and blood in differentiating multiple sclerosis and its subtypes: A systematic review and meta-analysis. Mult Scler Relat Disord. 2021; 51: 102870. https://dx.doi.org/10.1016/j.msard.2021.102870.


18. Biernacki T., Kokas Z., Sandi D. et al. Emerging biomarkers of multiple sclerosis in the blood and the CSF: A focus on neurofilaments and therapeutic considerations. Int J Mol Sci. 2022; 23(6): 3383. https://dx.doi.org/10.3390%2Fijms23063383.


19. Sussmuth S.D., Tumani H., Ecker D., Ludolph A.C. Amyotrophic lateral sclerosis: Disease stage related changes of tau protein and S100 beta in cerebrospinal fluid and creatine kinase in serum. Neurosci Lett. 2003; 353(1): 57–60. https://dx.doi.org/10.1016/j.neulet.2003.09.018.


20. Koch M., Mostert J., Heersema D. et.al. J. Plasma S100beta and NSE levels and progression in multiple sclerosis. J Neurol Sci. 2007; 252(2): 154–58. https://dx.doi.org/10.1016/j.jns.2006.11.012.


21. Rao M.V., Campbell J., Yuan A. et.al. The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. J Cell Biol. 2003; 163(5): 1021–31. https://dx.doi.org/10.1083%2Fjcb.200308076.


22. Novakova L., Axelsson M., Khademi M. et.al. Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing-remitting multiple sclerosis. J Neurochem. 2016; 141(2): 296–304. https://dx.doi.org/10.1111/jnc.13881.


23. Reyes S., Smets I., Holden D. et al. CSF neurofilament light chain testing as an aid to determine treatment strategies in MS. Neurol Neuroimmunol Neuroinflamm. 2020; 7(6): e880. https://dx.doi.org/10.1212%2FNXI.0000000000000880.


24. Thebault S., Abdoli M., Fereshtehnejad S.M. et al. Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis. Sci Rep. 2020; 10(1): 10381. https://dx.doi.org/10.1038/s41598-020-67504-6.


25. Yang J., Hamade M., Wu Q. et al. Current and future biomarkers in multiple sclerosis. Int J Mol Sci. 2022; 23(11): 5877. https://dx.doi.org/10.3390/ijms23115877/


26. Sejbaek T., Nielsen H.H., Penner N. et al. Dimethyl fumarate decreases neurofilament light chain in CSF and blood of treatment naive relapsing MS patients. J Neurol Neurosurg Psychiatry. 2019; 90(12): 1324–30. https://dx.doi.org/10.1136/jnnp-2019-32132.


27. Manouchehrinia A., Piehl F., Hillert J. et al. Confounding effect of blood volume and body mass index on blood neurofilament light chain levels. Ann Clin Transl Neurol. 2020; 7(1): 139–43. https://dx.doi.org/10.1002/acn3.50972.


28. Virgilio E., De Marchi F., Contaldi E. et al. The role of Tau beyond Alzheimer’s disease: A narrative review. Biomedicines. 2022; 10(4): 760. https://dx.doi.org/10.3390/biomedicines10040760.


29. Guimaraes I., Cardoso M.I., Sa M.J. Tau protein seems not to be a useful routine clinical marker of axonal damage in multiple sclerosis. Mult Scler. 2006; 12(3): 354–56. https://dx.doi.org/10.1191/1352458506ms1288sr.


30. Rosenthal A. The cerebrospinal fluid proteins in multiple sclerosis. Clin Lab Med. 1986; 6(3): 457–75.


31. Sellebjerg F., Christiansen M., Garred P. MBP, anti-MBP and anti-PLP antibodies, and intrathecal complement activation in multiple sclerosis. Mult Scler. 1998; 4(3): 127–31. https://dx.doi.org/10.1177/135245859800400307.


32. Harris V.K., Sadiq S.A. Disease biomarkers in multiple sclerosis: Potential for use in therapeutic decision making. Mol Diagn Ther. 2009; 13(4): 225–44. https://dx.doi.org/10.1007/bf03256329.


33. Wu Q., Wang Q., Yang J. et al. Elevated sCD40L in secondary progressive multiple sclerosis in comparison to non-progressive benign and relapsing remitting multiple sclerosis. J Cent Nerv Syst Dis. 2021; 13: 11795735211050712. https://dx.doi.org/10.1177/11795735211050712.


34. Gurtner K.M., Shosha E., Bryant S.C. et al. CSF free light chain identification of demyelinating disease: Comparison with oligoclonal banding and other CSF indexes. Clin Chem Lab Med. 2018; 56(7): 1071–80. https://dx.doi.org/10.1515/cclm-2017-0901.


35. Presslauer S., Milosavljevic D., Brucke T. et al. Elevated levels of kappa free light chains in CSF support the diagnosis of multiple sclerosis. J Neurol. 2008; 255(10): 1508–14. https://dx.doi.org/10.1007/s00415-008-0954-z.


About the Autors


Ekaterina Yu. Elchaninova, PhD in Medical Sciences, assistant at the Department of neurology and neurosurgery with the course of CPE, Altai State Medical University of the Ministry of Healthcare of Russia. Address: 656038, Barnaul, 40 Lenina Avenue. Е-mail: ekaterina_chukina@mail.ru. ORCID: https://orcid.org/0000-0003-4500-4913
Alisa I. Afanasyeva, assistant at the Department of neurology and neurosurgery with the course of CPE, Altai State Medical University of the Ministry of Healthcare of Russia. Address: 656038, Barnaul, 40 Lenina Avenue. Е-mail: lac-alisa@yandex.ru. ORCID: https://orcid.org/0000-0002-7507-3963
Inna V. Smagina, MD, professor, head of the Department of neurology and neurosurgery with the course of CPE, Altai State Medical University of the Ministry of Healthcare of Russia. Address: 656038, Barnaul, 40 Lenina Avenue. E-mail: siv7000@yandex.ru. ORCID: https://orcid.org/0000-0002-7947-4529
Svetlana A. Elchaninova, PhD in Biological Sciences, professor, professor of the Department of biochemistry and clinical laboratory diagnostics, Altai State Medical University of the Ministry of Healthcare of Russia. Address: 656038, Barnaul, 40 Lenina Avenue. E-mail: saelch@mail.ru. ORCID: https://orcid.org/0000-0003-2730-615X


Similar Articles


Бионика Медиа