Modern aspects of use of tirzepatide – the first dual agonist of glucagon-like peptide-1 and glucosependent insulinotropic peptide receptors


DOI: https://dx.doi.org/10.18565/therapy.2023.8.65-74

Usanova A.A., Lavrenova E.A., Kunyaeva T.A., Kuzma F., Novikova E.K., Sergutova N.P., Chatkina T.A.

1) N.P. Ogarev National Research Mordovia State University, Saransk; 2) National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia, Moscow; 3) A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia
Abstract. There is currently a need for new effective treatments for type 2 diabetes mellitus that provide adequate glycemic control, resolve associated metabolic abnormalities, and let to achieve enable more ambitious weight loss goals within individualized treatment plans. Tirzepatide, the first and still only one dual agonist of glucagon-like peptide-1 and glucose-dependent insulinotropic peptide receptors, is highly effective both in terms of glycemic control and in reducing body weight by more than 20% of the original one, as well as a positive effect on lipid metabolism and sensitivity to insulin. The medicine was approved for use in May 2022, starting the era of «twincretins» – extremely effective remedies for type 2 diabetes and obesity treatment, as well as for advanced cardiometabolic risk management. Article presents the key characteristics of tirzepatide based on data obtained in the SURPASS 1–5 and SURMOUNT-1 studies, and also briefly discusses further vectors for the development of this class of drugs.

Literature


1. Iglay K., Hannachi H., Howie P.J. et al. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Cur Med Res Opin. 2016; 32(7): 1243–52. https://dx.doi.org/10.1185/03007995.2016.1168291.


2. Carey V.J., Walters E.E., Colditz G.A. et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women: The nurses’ health study. Am J Epidemiol. 1997; 145(7): 614–19. https://dx.doi.org/10.1093/oxfordjournals.aje.a009158.


3. Bellou V., Belbasis L., Tzoulaki I., Evangelou E. Risk factors for type 2 diabetes mellitus: an exposure-wide umbrella review of meta-analyses. PLoS One. 2018; 13(3): e0194127. https://dx.doi.org/10.1371/journal.pone.0194127.


4. Kahn S.E., Hull R.L., Utzschneider K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006; 444(7121): 840–46. https://dx.doi.org/10.1038/nature05482.


5. American Diabetes Association. Obesity management for the treatment of type 2 diabetes: Standards of medical care in diabetes – 2021. Diabetes Care. 2021; 44(Supplement 1): S100–10. https://dx.doi.org/10.2337/dc21-S008.


6. Lingvay I., Sumithran P., Cohen R.V., le Roux C.W. Obesity management as a primary treatment goal for type 2 diabetes: Time to reframe the conversation. Lancet. 2022; 399(10322): 394–405. https://dx.doi.org/10.1016/S0140-6736(21)01919-X.


7. Look AHEAD Research Group. Eight-year weight losses with an intensive lifestyle intervention: The look AHEAD study. Obesity (Silver Spring). 2014; 22(1): 5–13. https://dx.doi.org/10.1002/oby.20662.


8. Penn L., White M., Lindstrom J. et al. Importance of weight loss maintenance and risk prediction in the prevention of type 2 diabetes: analysis of European Diabetes Prevention Study RCT. PLoS One. 2013; 8(2): e57143. https://dx.doi.org/10.1371/journal.pone.0057143.


9. Knowler W.C., Barrett-Connor E., Fowler S.E. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346(6): 393–403. https://dx.doi.org/10.1056/NEJMoa012512.


10. Stensen S., Gasbjerg L.S., Krogh L.L. et al. Effects of endogenous GIP in patients with type 2 diabetes. Eur J Endocrinol. 2021; 185(1): 33–45. https://dx.doi.org/10.1530/EJE-21-0135.


11. Mohammad S., Ramos L.S., Buck J. et al. Gastric inhibitory peptide controls adipose insulin sensitivity via activation of cAMP-response element-binding protein and p110β isoform of phosphatidylinositol 3-kinase. J Biol Chem. 2011; 286(50): 43062–70. https://dx.doi.org/10.1074/jbc.M111.289009.


12. Dupre J., Ross S.A., Watson D., Brown J.C. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab. 1973; 37(5): 826–28. https://dx.doi.org/10.1210/jcem-37-5-826.


13. Coskun T., Sloop K.W., Loghin C. et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol Metab. 2018; 18: 3–14. https://dx.doi.org/10.1016/j.molmet.2018.09.009.


14. Thomas M.K., Nikooienejad A., Bray R. et al. Dual GIP and GLP-1 receptor agonist tirzepatide improves beta-cell function and insulin sensitivity in type 2 diabetes. J Clin Endocrinol Metab. 2021; 106(2): 388–96. https://dx.doi.org/10.1210/clinem/dgaa863.


15. Frias J.P., Davies M.J., Rosenstock J. et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021; 385(6): 503–15. https://dx.doi.org/10.1056/NEJMoa2107519.


16. Heise T., Mari A., DeVries J.H. et al. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: A multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol. 2022; 10(6): 418–29. https://dx.doi.org/10.1016/S2213-8587(22)00085-7.


17. Samms R.J., Christe M.E., Collins K.A. et al. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J Clin Invest. 2021; 131(12): e146353. https://dx.doi.org/10.1172/JCI146353.


18. Furihata K., Mimura H., Urva S. et al. A phase 1 multiple-ascending dose study of tirzepatide in Japanese participants with type 2 diabetes. Diabetes Obes Metab. 2022; 24(2): 239–46. https://dx.doi.org/10.1111/dom.14572.


19. Heise T., DeVries J.H., Urva S. et al. Tirzepatide reduces appetite, energy intake, and fat mass in people with type 2 diabetes. Diabetes Care. 2023; 46(5): 998–1004. https://dx.doi.org/10.2337/dc22-1710.


20. Rosenstock J., Wysham C., Frias J.P. et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): A double-blind, randomised, phase 3 trial [published correction appears in Lancet. 2021; 398(10296): 212]. Lancet. 2021; 398(10295): 143–55. https://dx.doi.org/10.1016/S0140-6736(21)01324-6.


21. Ludvik B., Giorgino F., Jodar E. et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): A randomised, open-label, parallel-group, phase 3 trial. Lancet. 2021; 398(10300): 583–98. https://dx.doi.org/10.1016/S0140-6736(21)01443-4.


22. Del Prato S., Kahn S.E., Pavo I. et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): A randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet. 2021; 398(10313): 1811–24. https://dx.doi.org/10.1016/S0140-6736(21)02188-7.


23. Dahl D., Onishi Y., Norwood P. et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: The SURPASS-5 randomized clinical trial. JAMA. 2022; 327(6): 534–45. https://dx.doi.org/10.1001/jama.2022.0078.


24. Battelino T., Bergenstal R.M., Rodriguez A. et al. Efficacy of once-weekly tirzepatide versus once-daily insulin degludec on glycaemic control measured by continuous glucose monitoring in adults with type 2 diabetes (SURPASS-3 CGM): A substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial [published correction appears in Lancet Diabetes Endocrinol. 2022; 10(8): e8]. Lancet Diabetes Endocrinol. 2022; 10(6): 407–17. https://dx.doi.org/10.1016/S2213-8587(22)00077-8.


25. Gastaldelli A., Cusi K., Fernandez Lando L. et al. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): A substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022; 10(6): 393–406. https://dx.doi.org/10.1016/S2213-8587(22)00070-5.


26. American Diabetes Association. 6. Glycemic targets: Standards of medical care in diabetes-2021. Diabetes Care. 2021; 44(Suppl 1): S73–84. https://dx.doi.org/10.2337/dc21-S006.


27. Garber A.J., Handelsman Y., Grunberger G. et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2020 executive summary. Endocr Pract. 2020; 26(1): 107–39. https://dx.doi.org/10.4158/CS-2019-0472.


28. Emerging Risk Factors Collaboration; Danesh J., Erqou S., Walker M. et al. The Emerging Risk Factors Collaboration: Analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol. 2007; 22(12): 839–69. https://dx.doi.org/10.1007/s10654-007-9165-7.


29. Siren R., Eriksson J.G., Vanhanen H. Waist circumference a good indicator of future risk for type 2 diabetes and cardiovascular disease. BMC Public Health. 2012; 12: 631. https://dx.doi.org/10.1186/1471-2458-12-631.


30. Csige I., Ujvarosy D., Szabo Z. et al. The impact of obesity on the cardiovascular system. J Diabetes Res. 2018; 2018: 3407306. https://dx.doi.org/10.1155/2018/3407306.


31. Lazzaroni E., Ben Nasr M., Loretelli C. et al. Anti-diabetic drugs and weight loss in patients with type 2 diabetes. Pharmacol Res. 2021; 171: 105782. https://dx.doi.org/10.1016/j.phrs.2021.105782.


32. Visco V., Izzo C., Bonadies D. et al. Interventions to address cardiovascular risk in obese patients: Many hands make light work. J Cardiovasc Dev Dis. 2023; 10(8): 327. https://dx.doi.org/10.3390/jcdd10080327.


33. Jastreboff A.M., Aronne L.J., Ahmad N.N. et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022; 387(3): 205–16. https://dx.doi.org/10.1056/NEJMoa2206038.


34. Ryan D.H., Yockey S.R. Weight loss and improvement in comorbidity: Differences at 5%, 10%, 15%, and over. Curr Obes Rep. 2017; 6(2): 187–94. https://dx.doi.org/10.1007/s13679-017-0262-y.


35. Davidson M.B. In adults with obesity without diabetes, adding tirzepatide to a lifestyle intervention increased weight loss at 72 wk. Ann Intern Med. 2022; 175(10): JC116. https://dx.doi.org/10.7326/J22-0072.


36. Hindson J. Tirzepatide to treat obesity: Phase III results. Nat Rev Gastroenterol Hepatol. 2022; 19(8): 488. https://dx.doi.org/10.1038/s41575-022-00657-z.


37. Tysoe O. Tirzepatide highly effective for weight loss. Nat Rev Endocrinol. 2022; 18(9): 520. https://dx.doi.org/10.1038/s41574-022-00715-1.


38. Trimarco V., Izzo R., Mone P. et al. Therapeutic concordance improves blood pressure control in patients with resistant hypertension. Pharmacol Res. 2023; 187: 106557. https://dx.doi.org/10.1016/j.phrs.2022.106557.


39. Wilson J.M., Lin Y., Luo M.J. et al. The dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonist tirzepatide improves cardiovascular risk biomarkers in patients with type 2 diabetes: A post hoc analysis. Diabetes Obes Metab. 2022; 24(1): 148–53. https://dx.doi.org/10.1111/dom.14553.


About the Autors


Anna A. Usanova, MD, professor, head of the Department of faculty therapy with a course of medical rehabilitation, N.P. Ogarev National Research Mordovia State University. Address: 430005, Saransk, 68/1 Bolshevistskaya St.
E-mail: anna61-u@mail.ru
ORCID: https://orcid.org/0000-0003-2948-4865
Evgenia A. Lavrenova, endocrinologist-nutritionist, scientific researcher of the Department of fundamental and applied aspects of obesity, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia, assistant at the Department of therapy and preventive medicine, A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia. Address: 101990, Moscow, 10/3 Petroverigsky Lane
Tatyana A. Kunyaeva, PhD in Medical Sciences, associate professor of the Department of outpatient therapy, N.P. Ogarev National Research Mordovia State University. Address: 430005, Saransk, 68/1 Bolshevistskaya St.
E-mail: kunya_eva@mail.ru
ORCID: https://orcid.org/0000-0003-4245-4265
Fadi Kuzma, senior lecturer at the Department of faculty therapy with a course of medical rehabilitation,
N.P. Ogarev National Research Mordovia State University. Address: 430005, Saransk, 68/1 Bolshevistskaya St.
E-mail: fadykuzma@mail.ru
ORCID: https://orcid.org/0000-0002-5215-0196
Elvira K. Novikova, assistant at the Department of faculty therapy with a course of medical rehabilitation,
N.P. Ogarev National Research Mordovia State University. Address: 430005, Saransk, 68/1 Bolshevistskaya St.
E-mail: Elja_F@mail.ru
ORCID: https://orcid.org/0000-0002-2839-8984
Natalya P. Sergutova, PhD in Medical Sciences, associate professor of the Department of faculty therapy with a course of medical rehabilitation, N.P. Ogarev National Research Mordovia State University. Address: 430005, Saransk, 68/1 Bolshevistskaya St.
E-mail: sergutovanp@mail.ru
ORCID: https://orcid.org/0000-0001-8274-7906
Tatyana A. Chatkina, 6th year student of the Medical institute, N.P. Ogarev National Research Mordovia State University. Address: 430005, Saransk, 68/1 Bolshevistskaya St.
E-mail: Tanachatkina02@gmail.ru
ORCID: https://orcid.org/0009-0004-6349-4025


Similar Articles


Бионика Медиа