Obstructive sleep apnea syndrome, diabetes mellitus and cardiovascular complications


DOI: https://dx.doi.org/10.18565/therapy.2024.8.86-94

Kazachenko A.A., Kulikov A.N., Tanich A.V.

1) S.M. Kirov Military Medical Academy of the Ministry of Defence of the Russian Federation, Saint Petersburg; 2) Academician I.P. Pavlov First Saint Petersburg State Medical University of the Ministry of Healthcare of Russia
Abstract. The review analyzes current data concerning the correlation between obstructive sleep apnea syndrome (OSAS), diabetes mellitus (DM) and cardiovascular complications. The results of research work dedicated to the effect of OSAS at glucose metabolism, its role in the development of cardiovascular diseases and their complications are considered. Also information about the effect of DM at the risk of this syndrome developing is presented. Controversial aspects of the efficacy of OSAS therapy (CPAP therapy and weight loss) from the standpoint of reducing the risk of cardiovascular complications development are also covered in the article.

Literature


1. Memnon: History of Heracleia. Chapter 4.7. Smith A. (translator). 2004.


2. Benjafield A.V., Ayas N.T., Eastwood P.R. et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir Med. 2019; 7(8): 687–98.


https://doi.org/10.1016/S2213-2600(19)30198-5. PMID: 31300334. PMCID: PMC7007763.


3. Бузунов Р.В., Пальман А.Д., Мельников А.Ю. с соавт. Диагностика и лечение синдрома обструктивного апноэ сна у взрослых. Рекомендации Российского общества сомнологов. Эффективная фармакотерапия. 2018; (35): 34–45. (Buzunov R.V., Palman A.D., Melnikov A.Yu. et al. Diagnostics and treatment of obstructive sleep apnea syndrome in adults. Recommendations of the Russian Society of Sleep Medicine. Effektivnaya farmakoterapiya = Effective Pharmacotherapy. 2018; (35): 34–45 (In Russ.)). EDN: YNMYUP.


4. Бузунов Р.В., Легейда И.В., Царева Е.В. Храп и синдром обструктивного апноэ сна у взрослых и детей. М.: ФГБУ «Клинический санаторий Барвиха». 2013; 124 с. (Buzunov R.V., Legeida I.V., Tsareva E.V. Snoring and obstructive sleep apnea syndrome in adults and children. Moscow: “Clinical Sanatorium Barvikha”. 2013; 124 pp. (In Russ.)).


5. Dempsey J.A., Veasey S.C., Morgan B.J., O’Donnell C.P. Pathophysiology of sleep apnea (published correction appears in Physiol Rev. 2010; 90(2): 797–98). Physiol Rev. 2010; 90(1): 47–112.


https://doi.org/10.1152/physrev.00043.2008. PMID: 20086074. PMCID: PMC397093.


6. Lavie L., Lavie P. Molecular mechanisms of cardiovascular disease in OSAHS: The oxidative stress link. Eur Respir J. 2009; 33(6): 1467–84.


https://doi.org/10.1183/09031936.00086608. PMID: 19483049.


7. Belaidi E., Joyeux-Faure M., Ribuot C. et al. Major role for hypoxia inducible factor-1 and the endothelin system in promoting myocardial infarction and hypertension in an animal model of obstructive sleep apnea. J Am Coll Cardiol. 2009; 53(15): 1309–17.


https://doi.org/10.1016/j.jacc.2008.12.050. PMID: 19358946.


8. Semenza G.L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009; 24: 97–106.


https://doi.org/10.1152/physiol.00045.2008. PMID: 19364912.


9. Holt A., Bjerre J., Zareini B. et al. Sleep apnea, the risk of developing heart failure, and potential benefits of continuous positive airway pressure (CPAP) therapy. J Am Heart Assoc. 2018; 7(13): e008684.


https://doi.org/10.1161/JAHA.118.008684. PMID: 29934418. PMCID: PMC6064879.


10. Seiler A., Camilo M., Korostovtseva L. et al. Prevalence of sleep-disordered breathing after stroke and TIA: A meta-analysis. Neurology. 2019; 92(7): e648–e654. https://doi.org/10.1212/WNL.0000000000006904. PMID: 30635478.


11. Loke Y.K., Brown J.W.L., Kwok C.S. et al. Association of obstructive sleep apnea with risk of serious cardiovascular events: A systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2012; 5(5): 720–28.


https://doi.org/10.1161/circoutcomes.111.964783. PMID: 22828826.


12. Brown D.L., Shafie-Khorassani F., Kim S. et al. Sleep-disordered breathing is associated with recurrent ischemic stroke. Stroke. 2019; 50(3): 571–76.


https://doi.org/10.1161/strokeaha.118.023807. PMID: 30744545. PMCID: PMC6389387.


13. Marin J.M., Carrizo S.J., Vicente E., Agusti A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet. 2005; 365(9464): 1046–53.


https://doi.org/10.1016/S0140-6736(05)71141-7. PMID: 15781100.


14. Xie C., Zhu R., Tian Y., Wang K. Association of obstructive sleep apnoea with the risk of vascular outcomes and all-cause mortality: A meta-analysis. BMJ Open. 2017; 7(12): e013983.


https://doi.org/10.1136/bmjopen-2016-013983. PMID: 29275335. PMCID: PMC5770910.


15. Feher M., Hinton W., Munro N., de Lusignan S. Obstructive sleep apnoea in type 2 diabetes mellitus: Increased risk for overweight as well as obese people included in a national primary care database analysis. Diabet Med. 2019; 36(10): 1304–11.


https://doi.org/10.1111/dme.13968. PMID: 31001841. PMCID: PMC6767542.


16. Heffner J.E., Rozenfeld Y., Kai M. et al. Prevalence of diagnosed sleep apnea among patients with type 2 diabetes in primary care. Chest. 2012; 141(6): 1414–21.


https://doi.org/10.1378/chest.11-1945. PMID: 22095313.


17. Einhorn D., Stewart D.A., Erman M.K. et al. Prevalence of sleep apnea in a population of adults with type 2 diabetes mellitus. Endocr Pract. 2007; 13(4): 355–62.


https://doi.org/10.4158/EP.13.4.355. PMID: 17669711.


18. Singh A., Chaudhary S.C., Gupta K.K. et al. Prevalence of obstructive sleep apnea in diabetic patients. Ann Afr Med. 2021; 20(3): 206–211.


https://doi.org/10.4103/aam.aam_43_20. PMID: 34558450. PMCID: PMC8477286.


19. Kendzerska T., Gershon A.S., Hawker G. et al. Obstructive sleep apnea and incident diabetes. A historical cohort study. Am J Respir Crit Care Med. 2014; 190(2): 218–25.


https://doi.org/10.1164/rccm.201312-2209OC. PMID: 24897551.


20. Wang C., Tan J., Miao Y., Zhang Q. Obstructive sleep apnea, prediabetes and progression of type 2 diabetes: A systematic review and meta-analysis. J Diabetes Investig. 2022; 13(8): 1396–1411.


https://doi.org/10.1111/jdi.13793. PMID: 35302714. PMCID: PMC9340883.


21. Dong M., Guo F., Zhou T., Wei Q. Association of diabetic nephropathy with the severity of obstructive sleep apnea-hypopnea syndrome in patients with type 2 diabetes mellitus. Endocr J. 2020; 67(5): 515–22.


https://doi.org/10.1507/endocrj.ej19-0324. PMID: 32023571.


22. Gu X., Luo X., Wang X. et al. The correlation between obstructive sleep apnea and diabetic neuropathy: A meta-analysis. Prim Care Diabetes. 2018; 12(5): 460–66.


https://doi.org/10.1016/j.pcd.2018.03.005. PMID: 29728306.


23. Tahrani A.A., Ali A., Raymond N.T. et al. Obstructive sleep apnea and diabetic neuropathy: A novel association in patients with type 2 diabetes. Am J Respir Crit Care Med. 2012; 186(5): 434–41.


https://doi.org/10.1164/rccm.201112-2135OC. PMID: 22723291. PMCID: PMC3443800.


24. Newhouse L.P., Joyner M.J., Curry T.B. et al. Three hours of intermittent hypoxia increases circulating glucose levels in healthy adults. Physiol Rep. 2017; 5(1): e13106.


https://doi.org/10.14814/phy2.13106. PMID: 28087818. PMCID: PMC5256164.


25. Wang N., Khan S.A., Prabhakar N.R., Nanduri J. Impairment of pancreatic β-cell function by chronic intermittent hypoxia. Exp Physiol. 2013; 98(9): 1376–85.


https://doi.org/10.1113/expphysiol.2013.072454. PMID: 23709585. PMCID: PMC3756548.


26. Ota H., Fujita Y., Yamauchi M. et al. Relationship between intermittent hypoxia and type 2 diabetes in sleep apnea syndrome. Int J Mol Sci. 2019; 20(19): 4756.


https://doi.org/10.3390/ijms20194756. PMID: 31557884. PMCID: PMC6801686.


27. Gabryelska A., Karuga F.F., Szmyd B., Białasiewicz P. HIF-1α as a mediator of insulin resistance, T2DM, and its complications: Potential links with obstructive sleep apnea. Front Physiol. 2020; 11: 1035.


https://doi.org/10.3389/fphys.2020.01035. PMID: 33013447. PMCID: PMC7509176.


28. Gabryelska A., Szmyd B., Szemraj J. et al. Patients with obstructive sleep apnea present with chronic upregulation of serum HIF-1α protein. J Clin Sleep Med. 2020; 16(10): 1761–68.


https://doi.org/10.5664/jcsm.8682. PMID: 32663129. PMCID: PMC7954009.


29. Reutrakul S., Mokhlesi B. Obstructive sleep apnea and diabetes: A state of the art review. Chest. 2017; 152(5): 1070–86.


https://doi.org/10.1016/j.chest.2017.05.009. PMID: 28527878. PMCID: PMC5812754.


30. Grimaldi D., Beccuti G., Touma C. et al. Association of obstructive sleep apnea in rapid eye movement sleep with reduced glycemic control in type 2 diabetes: Therapeutic implications. Diabetes Care. 2014; 37(2): 355–63.


https://doi.org/10.2337/dc13-0933. PMID: 24101701. PMCID: PMC3898763.


31. Fendri S., Rose D., Myambu S. et al. Nocturnal hyperglycaemia in type 2 diabetes with sleep apnoea syndrome. Diabetes Res Clin Pract. 2011; 91(1): e21–e23.


https://doi.org/10.1016/j.diabres.2010.09.029. PMID: 20970871.


32. Bialasiewicz P., Czupryniak L., Pawlowski M., Nowak D. Sleep disordered breathing in REM sleep reverses the downward trend in glucose concentration. Sleep Med. 2011; 12(1): 76–82.


https://doi.org/10.1016/j.sleep.2010.04.017. PMID: 21051282.


33. West S.D., Nicoll D.J., Wallace T.M. et al. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax. 2007; 62(11): 969–74.


https://doi.org/10.1136/thx.2006.074351. PMID: 17557769. PMCID: PMC2117137.


34. Shaw J.E., Punjabi N.M., Naughton M.T. et al. The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. Am J Respir Crit Care Med. 2016; 194(4): 486–92.


https://doi.org/10.1164/rccm.201511-2260OC. PMID: 26926656.


35. Subramanian A., Adderley N.J., Tracy A. et al. Risk of incident obstructive sleep apnea among patients with type 2 diabetes. Diabetes Care. 2019; 42(5): 954–63.


https://doi.org/10.2337/dc18-2004. PMID: 30862657.


36. Huang T., Lin B.M., Stampfer M.J. et al. A population-based study of the bidirectional association between obstructive sleep apnea and type 2 diabetes in three prospective U.S. Cohorts. Diabetes Care. 2018; 41(10): 2111–19.


https://doi.org/10.2337/dc18-0675. PMID: 30072403. PMCID: PMC6150434.


37. Georgoulis M., Yiannakouris N., Kechribari I. et al. “Dose-response relationship between weight loss and improvements in obstructive sleep apnea severity after a diet/lifestyle interventions: Secondary analyses of the “MIMOSA” randomized clinical trial. J Clin Sleep Med. 2022; 18(5): 1251–261.


https://doi.org/10.5664/jcsm.9834. PMID: 34915980. PMCID: PMC9059581.


38. Kurnool S., McCowen K.C., Bernstein N.A., Malhotra A. Sleep apnea, obesity, and diabetes – an intertwined trio. Curr Diab Rep. 2023; 23(7): 165–71.


https://doi.org/10.1007/s11892-023-01510-6. PMID: 37148488. PMCID: PMC10239381.


39. Blackman A., Foster G.D., Zammit G. et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: The SCALE Sleep Apnea randomized clinical trial. Int J Obes (Lond). 2016; 40(8): 1310–19.


https://doi.org/10.1038/ijo.2016.52. PMID: 27005405. PMCID: PMC4973216.


40. Kushida C.A., Littner M.R., Hirshkowitz M. et al.; American Academy of Sleep Medicine. Practice parameters for the use of continuous and bilevel positive airway pressure devices to treat adult patients with sleep-related breathing disorders. Sleep. 2006; 29(3): 375–80.


https://doi.org/10.1093/sleep/29.3.375. PMID: 16553024.


41. Campos-Rodriguez F., Martinez-Garcia M.A., de la Cruz-Moron I. et al. Cardiovascular mortality in women with obstructive sleep apnea with or without continuous positive airway pressure treatment: A cohort study. Ann Intern Med. 2012; 156(2): 115–22.


https://doi.org/10.7326/0003-4819-156-2-201201170-00006. PMID: 22250142.


42. McEvoy R.D., Antic N.A., Heeley E. et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016; 375(10): 919–31.


https://doi.org/10.1056/NEJMoa1606599. PMID: 27571048.


43. Sanchez-de-la-Torre M., Gracia-Lavedan E., Benitez I.D. et al. Adherence to CPAP treatment and the risk of recurrent cardiovascular events: A meta-analysis. JAMA. 2023; 330(13): 1255–65.


https://doi.org/10.1001/jama.2023.17465. PMID: 37787793. PMCID: PMC10548300.


44. Quan W., Zheng D., McEvoy R.D. et al. High risk characteristics for recurrent cardiovascular events among patients with obstructive sleep apnoea in the SAVE study. EClinicalMedicine. 2018; 2–3: 59–65.


https://doi.org/10.1016/j.eclinm.2018.09.002. PMID: 31193555. PMCID: PMC6537527.


About the Autors


Alexander A. Kazachenko, MD, PhD (Medicine), associate professor of the Department of propaedeutics of internal diseases, S.M. Kirov Military Medical Academy of the Ministry of Defenсe of the Russian Federation. Address: 194044, Saint Petersburg, 6 Akademika Lebedeva St.
E-mail: kazachenko.alex@gmail.com
ORCID: https://orcid.org/0000-0002-4578-7893. eLibrary SPIN: 4346-6785
Alexander N. Kulikov, MD, Dr. Sci. (Medicine), professor, head of the Department of propaedeutics of internal diseases, head of the Department of functional diagnostics, Academician I.P. Pavlov First Saint Petersburg State Medical University of the Ministry of Healthcare of Russia. Address: 197022, Saint Petersburg, 6–8 Lva Tolstogo St.
E-mail: ankulikov2005@yandex.ru
ORCID: https://orcid.org/0000-0002-4544-2967. eLibrary SPIN: 3851-6072
Anna V. Tanich, MD, assistant at the Department of propaedeutics of internal diseases, S.M. Kirov Military Medical Academy of the Ministry of Defence of the Russian Federation. Address: 194044, Saint Petersburg, 6 Akademika Lebedeva St.
E-mail: anya-tanich@yandex.ru
ORCID: https://orcid.org/0009-0006-3349-1813. eLibrary SPIN: 4059-6128


Similar Articles


Бионика Медиа