Синдром обструктивного апноэ во сне, сахарный диабет и сердечно-сосудистые осложнения


DOI: https://dx.doi.org/10.18565/therapy.2024.8.86-94

А.А. Казаченко, А.Н. Куликов, А.В. Танич

1) ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Министерства обороны РФ, г. Санкт-Петербург; 2) ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Минздрава России
Аннотация. В обзоре анализируются современные данные о взаимосвязи синдрома обструктивного апноэ во сне (СОАС), сахарного диабета (СД) и сердечно-сосудистых осложнений. Рассмотрены результаты исследований, посвященных влиянию СОАС на метаболизм глюкозы, его роли в развитии кардиоваскулярных заболеваний и их осложнений, представлены сведения и о влиянии СД на риск развития этого синдрома. Также освещены спорные вопросы эффективности терапии СОАС (СРАР-терапии и снижения веса) с позиции уменьшения риска развития сердечно-сосудистых осложнений.

Литература


1. Memnon: History of Heracleia. Chapter 4.7. Smith A. (translator). 2004.


2. Benjafield A.V., Ayas N.T., Eastwood P.R. et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir Med. 2019; 7(8): 687–98.


https://doi.org/10.1016/S2213-2600(19)30198-5. PMID: 31300334. PMCID: PMC7007763.


3. Бузунов Р.В., Пальман А.Д., Мельников А.Ю. с соавт. Диагностика и лечение синдрома обструктивного апноэ сна у взрослых. Рекомендации Российского общества сомнологов. Эффективная фармакотерапия. 2018; (35): 34–45. (Buzunov R.V., Palman A.D., Melnikov A.Yu. et al. Diagnostics and treatment of obstructive sleep apnea syndrome in adults. Recommendations of the Russian Society of Sleep Medicine. Effektivnaya farmakoterapiya = Effective Pharmacotherapy. 2018; (35): 34–45 (In Russ.)). EDN: YNMYUP.


4. Бузунов Р.В., Легейда И.В., Царева Е.В. Храп и синдром обструктивного апноэ сна у взрослых и детей. М.: ФГБУ «Клинический санаторий Барвиха». 2013; 124 с. (Buzunov R.V., Legeida I.V., Tsareva E.V. Snoring and obstructive sleep apnea syndrome in adults and children. Moscow: “Clinical Sanatorium Barvikha”. 2013; 124 pp. (In Russ.)).


5. Dempsey J.A., Veasey S.C., Morgan B.J., O’Donnell C.P. Pathophysiology of sleep apnea (published correction appears in Physiol Rev. 2010; 90(2): 797–98). Physiol Rev. 2010; 90(1): 47–112.


https://doi.org/10.1152/physrev.00043.2008. PMID: 20086074. PMCID: PMC397093.


6. Lavie L., Lavie P. Molecular mechanisms of cardiovascular disease in OSAHS: The oxidative stress link. Eur Respir J. 2009; 33(6): 1467–84.


https://doi.org/10.1183/09031936.00086608. PMID: 19483049.


7. Belaidi E., Joyeux-Faure M., Ribuot C. et al. Major role for hypoxia inducible factor-1 and the endothelin system in promoting myocardial infarction and hypertension in an animal model of obstructive sleep apnea. J Am Coll Cardiol. 2009; 53(15): 1309–17.


https://doi.org/10.1016/j.jacc.2008.12.050. PMID: 19358946.


8. Semenza G.L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009; 24: 97–106.


https://doi.org/10.1152/physiol.00045.2008. PMID: 19364912.


9. Holt A., Bjerre J., Zareini B. et al. Sleep apnea, the risk of developing heart failure, and potential benefits of continuous positive airway pressure (CPAP) therapy. J Am Heart Assoc. 2018; 7(13): e008684.


https://doi.org/10.1161/JAHA.118.008684. PMID: 29934418. PMCID: PMC6064879.


10. Seiler A., Camilo M., Korostovtseva L. et al. Prevalence of sleep-disordered breathing after stroke and TIA: A meta-analysis. Neurology. 2019; 92(7): e648–e654. https://doi.org/10.1212/WNL.0000000000006904. PMID: 30635478.


11. Loke Y.K., Brown J.W.L., Kwok C.S. et al. Association of obstructive sleep apnea with risk of serious cardiovascular events: A systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2012; 5(5): 720–28.


https://doi.org/10.1161/circoutcomes.111.964783. PMID: 22828826.


12. Brown D.L., Shafie-Khorassani F., Kim S. et al. Sleep-disordered breathing is associated with recurrent ischemic stroke. Stroke. 2019; 50(3): 571–76.


https://doi.org/10.1161/strokeaha.118.023807. PMID: 30744545. PMCID: PMC6389387.


13. Marin J.M., Carrizo S.J., Vicente E., Agusti A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet. 2005; 365(9464): 1046–53.


https://doi.org/10.1016/S0140-6736(05)71141-7. PMID: 15781100.


14. Xie C., Zhu R., Tian Y., Wang K. Association of obstructive sleep apnoea with the risk of vascular outcomes and all-cause mortality: A meta-analysis. BMJ Open. 2017; 7(12): e013983.


https://doi.org/10.1136/bmjopen-2016-013983. PMID: 29275335. PMCID: PMC5770910.


15. Feher M., Hinton W., Munro N., de Lusignan S. Obstructive sleep apnoea in type 2 diabetes mellitus: Increased risk for overweight as well as obese people included in a national primary care database analysis. Diabet Med. 2019; 36(10): 1304–11.


https://doi.org/10.1111/dme.13968. PMID: 31001841. PMCID: PMC6767542.


16. Heffner J.E., Rozenfeld Y., Kai M. et al. Prevalence of diagnosed sleep apnea among patients with type 2 diabetes in primary care. Chest. 2012; 141(6): 1414–21.


https://doi.org/10.1378/chest.11-1945. PMID: 22095313.


17. Einhorn D., Stewart D.A., Erman M.K. et al. Prevalence of sleep apnea in a population of adults with type 2 diabetes mellitus. Endocr Pract. 2007; 13(4): 355–62.


https://doi.org/10.4158/EP.13.4.355. PMID: 17669711.


18. Singh A., Chaudhary S.C., Gupta K.K. et al. Prevalence of obstructive sleep apnea in diabetic patients. Ann Afr Med. 2021; 20(3): 206–211.


https://doi.org/10.4103/aam.aam_43_20. PMID: 34558450. PMCID: PMC8477286.


19. Kendzerska T., Gershon A.S., Hawker G. et al. Obstructive sleep apnea and incident diabetes. A historical cohort study. Am J Respir Crit Care Med. 2014; 190(2): 218–25.


https://doi.org/10.1164/rccm.201312-2209OC. PMID: 24897551.


20. Wang C., Tan J., Miao Y., Zhang Q. Obstructive sleep apnea, prediabetes and progression of type 2 diabetes: A systematic review and meta-analysis. J Diabetes Investig. 2022; 13(8): 1396–1411.


https://doi.org/10.1111/jdi.13793. PMID: 35302714. PMCID: PMC9340883.


21. Dong M., Guo F., Zhou T., Wei Q. Association of diabetic nephropathy with the severity of obstructive sleep apnea-hypopnea syndrome in patients with type 2 diabetes mellitus. Endocr J. 2020; 67(5): 515–22.


https://doi.org/10.1507/endocrj.ej19-0324. PMID: 32023571.


22. Gu X., Luo X., Wang X. et al. The correlation between obstructive sleep apnea and diabetic neuropathy: A meta-analysis. Prim Care Diabetes. 2018; 12(5): 460–66.


https://doi.org/10.1016/j.pcd.2018.03.005. PMID: 29728306.


23. Tahrani A.A., Ali A., Raymond N.T. et al. Obstructive sleep apnea and diabetic neuropathy: A novel association in patients with type 2 diabetes. Am J Respir Crit Care Med. 2012; 186(5): 434–41.


https://doi.org/10.1164/rccm.201112-2135OC. PMID: 22723291. PMCID: PMC3443800.


24. Newhouse L.P., Joyner M.J., Curry T.B. et al. Three hours of intermittent hypoxia increases circulating glucose levels in healthy adults. Physiol Rep. 2017; 5(1): e13106.


https://doi.org/10.14814/phy2.13106. PMID: 28087818. PMCID: PMC5256164.


25. Wang N., Khan S.A., Prabhakar N.R., Nanduri J. Impairment of pancreatic β-cell function by chronic intermittent hypoxia. Exp Physiol. 2013; 98(9): 1376–85.


https://doi.org/10.1113/expphysiol.2013.072454. PMID: 23709585. PMCID: PMC3756548.


26. Ota H., Fujita Y., Yamauchi M. et al. Relationship between intermittent hypoxia and type 2 diabetes in sleep apnea syndrome. Int J Mol Sci. 2019; 20(19): 4756.


https://doi.org/10.3390/ijms20194756. PMID: 31557884. PMCID: PMC6801686.


27. Gabryelska A., Karuga F.F., Szmyd B., Białasiewicz P. HIF-1α as a mediator of insulin resistance, T2DM, and its complications: Potential links with obstructive sleep apnea. Front Physiol. 2020; 11: 1035.


https://doi.org/10.3389/fphys.2020.01035. PMID: 33013447. PMCID: PMC7509176.


28. Gabryelska A., Szmyd B., Szemraj J. et al. Patients with obstructive sleep apnea present with chronic upregulation of serum HIF-1α protein. J Clin Sleep Med. 2020; 16(10): 1761–68.


https://doi.org/10.5664/jcsm.8682. PMID: 32663129. PMCID: PMC7954009.


29. Reutrakul S., Mokhlesi B. Obstructive sleep apnea and diabetes: A state of the art review. Chest. 2017; 152(5): 1070–86.


https://doi.org/10.1016/j.chest.2017.05.009. PMID: 28527878. PMCID: PMC5812754.


30. Grimaldi D., Beccuti G., Touma C. et al. Association of obstructive sleep apnea in rapid eye movement sleep with reduced glycemic control in type 2 diabetes: Therapeutic implications. Diabetes Care. 2014; 37(2): 355–63.


https://doi.org/10.2337/dc13-0933. PMID: 24101701. PMCID: PMC3898763.


31. Fendri S., Rose D., Myambu S. et al. Nocturnal hyperglycaemia in type 2 diabetes with sleep apnoea syndrome. Diabetes Res Clin Pract. 2011; 91(1): e21–e23.


https://doi.org/10.1016/j.diabres.2010.09.029. PMID: 20970871.


32. Bialasiewicz P., Czupryniak L., Pawlowski M., Nowak D. Sleep disordered breathing in REM sleep reverses the downward trend in glucose concentration. Sleep Med. 2011; 12(1): 76–82.


https://doi.org/10.1016/j.sleep.2010.04.017. PMID: 21051282.


33. West S.D., Nicoll D.J., Wallace T.M. et al. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax. 2007; 62(11): 969–74.


https://doi.org/10.1136/thx.2006.074351. PMID: 17557769. PMCID: PMC2117137.


34. Shaw J.E., Punjabi N.M., Naughton M.T. et al. The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. Am J Respir Crit Care Med. 2016; 194(4): 486–92.


https://doi.org/10.1164/rccm.201511-2260OC. PMID: 26926656.


35. Subramanian A., Adderley N.J., Tracy A. et al. Risk of incident obstructive sleep apnea among patients with type 2 diabetes. Diabetes Care. 2019; 42(5): 954–63.


https://doi.org/10.2337/dc18-2004. PMID: 30862657.


36. Huang T., Lin B.M., Stampfer M.J. et al. A population-based study of the bidirectional association between obstructive sleep apnea and type 2 diabetes in three prospective U.S. Cohorts. Diabetes Care. 2018; 41(10): 2111–19.


https://doi.org/10.2337/dc18-0675. PMID: 30072403. PMCID: PMC6150434.


37. Georgoulis M., Yiannakouris N., Kechribari I. et al. “Dose-response relationship between weight loss and improvements in obstructive sleep apnea severity after a diet/lifestyle interventions: Secondary analyses of the “MIMOSA” randomized clinical trial. J Clin Sleep Med. 2022; 18(5): 1251–261.


https://doi.org/10.5664/jcsm.9834. PMID: 34915980. PMCID: PMC9059581.


38. Kurnool S., McCowen K.C., Bernstein N.A., Malhotra A. Sleep apnea, obesity, and diabetes – an intertwined trio. Curr Diab Rep. 2023; 23(7): 165–71.


https://doi.org/10.1007/s11892-023-01510-6. PMID: 37148488. PMCID: PMC10239381.


39. Blackman A., Foster G.D., Zammit G. et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: The SCALE Sleep Apnea randomized clinical trial. Int J Obes (Lond). 2016; 40(8): 1310–19.


https://doi.org/10.1038/ijo.2016.52. PMID: 27005405. PMCID: PMC4973216.


40. Kushida C.A., Littner M.R., Hirshkowitz M. et al.; American Academy of Sleep Medicine. Practice parameters for the use of continuous and bilevel positive airway pressure devices to treat adult patients with sleep-related breathing disorders. Sleep. 2006; 29(3): 375–80.


https://doi.org/10.1093/sleep/29.3.375. PMID: 16553024.


41. Campos-Rodriguez F., Martinez-Garcia M.A., de la Cruz-Moron I. et al. Cardiovascular mortality in women with obstructive sleep apnea with or without continuous positive airway pressure treatment: A cohort study. Ann Intern Med. 2012; 156(2): 115–22.


https://doi.org/10.7326/0003-4819-156-2-201201170-00006. PMID: 22250142.


42. McEvoy R.D., Antic N.A., Heeley E. et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016; 375(10): 919–31.


https://doi.org/10.1056/NEJMoa1606599. PMID: 27571048.


43. Sanchez-de-la-Torre M., Gracia-Lavedan E., Benitez I.D. et al. Adherence to CPAP treatment and the risk of recurrent cardiovascular events: A meta-analysis. JAMA. 2023; 330(13): 1255–65.


https://doi.org/10.1001/jama.2023.17465. PMID: 37787793. PMCID: PMC10548300.


44. Quan W., Zheng D., McEvoy R.D. et al. High risk characteristics for recurrent cardiovascular events among patients with obstructive sleep apnoea in the SAVE study. EClinicalMedicine. 2018; 2–3: 59–65.


https://doi.org/10.1016/j.eclinm.2018.09.002. PMID: 31193555. PMCID: PMC6537527.


Об авторах / Для корреспонденции


Александр Александрович Казаченко, к. м. н., доцент кафедры пропедевтики внутренних болезней ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Министерства обороны РФ. Адрес: 194044, г. Санкт-Петербург, ул. Академика Лебедева, д. 6.
E-mail: kazachenko.alex@gmail.com
ORCID: https://orcid.org/0000-0002-4578-7893. eLibrary SPIN: 4346-6785
Александр Николаевич Куликов, д. м. н., профессор, заведующий кафедрой пропедевтики внутренних болезней, заведующий кафедрой функциональной диагностики ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Минздрава России. Адрес: 197022, г. Санкт-Петербург, ул. Льва Толстого, д. 6–8.
E-mail: ankulikov2005@yandex.ru
ORCID: https://orcid.org/0000-0002-4544-2967. eLibrary SPIN: 3851-6072
Анна Викторовна Танич, ассистент кафедры пропедевтики внутренних болезней ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Министерства обороны РФ. Адрес: 194044, г. Санкт-Петербург, ул. Академика Лебедева, д. 6.
E-mail: anya-tanich@yandex.ru
ORCID: https://orcid.org/0009-0006-3349-1813. eLibrary SPIN: 4059-6128


Похожие статьи


Бионика Медиа