DOI: https://dx.doi.org/10.18565/therapy.2024.10.125-133
Prikhodko V.A., Okovityi S.V.
1) Saint Petersburg State Chemical-Pharmaceutical University of the Ministry of Healthcare of Russia; 2) Saint Petersburg State University
1. Franceschi C., Bonafe M., Valensin S. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000; 908: 244–54. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x. PMID: 10911963. 2. Mancuso P., Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front Endocrinol (Lausanne). 2019; 10: 137. https://doi.org/10.3389/fendo.2019.00137. PMID: 30915034. PMCID: PMC6421296. 3. Guarner V., Rubio-Ruiz M.E. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol. 2015; 40: 99–106. https://doi.org/10.1159/000364934. PMID: 25341516. 4. Курган Н.Д., Панова Е.И., Силакова Л.В. с соавт. Перспективы оценки биологического и иммунологического возраста человека по факторам крови. Наука и инновации в медицине. 2021; 6(4): 19–39. (Kurgan N.D., Panova E.I., Silakova L.V. et al. Prospects for assessing the biological and immunological age of a person by blood factors. Nauka i innovatsii v meditsine = Science & Innovations in Medicine. 2021; 6(4): 19–39 (In Russ.)). https://doi.org/10.35693/2500-1388-2021-6-4-19-39. EDN: EYAERX. 5. Prata L.G.P.L., Ovsyannikova I.G., Tchkonia T., Kirkland J.L. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin Immunol. 2018; 40: 101275. https://doi.org/10.1016/j.smim.2019.04.003. PMID: 31088710. PMCID: PMC7061456. 6. Hoenicke L., Zender L. Immune surveillance of senescent cells – biological significance in cancer- and non-cancer pathologies. Carcinogenesis. 2012; 33(6): 1123–26. https://doi.org/10.1093/carcin/bgs124. PMID: 22470164. 7. Ovadya Y., Landsberger T., Leins H. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun. 2018; 9(1): 5435. https://doi.org/10.1038/s41467-018-07825-3. PMID: 30575733. PMCID: PMC6303397. 8. Lin Y., Li Q., Liang G. et al. Overview of innate immune cell landscape in liver aging. Int J Mol Sci. 2023; 25(1): 181. https://doi.org/10.3390/ijms25010181. PMID: 38203352. PMCID: PMC10778796. 9. Grizzi F., Di Caro G., Laghi L. et al. Mast cells and the liver aging process. Immun Ageing. 2013; 10(1): 9. https://doi.org/10.1186/1742-4933-10-9. PMID: 23496863. PMCID: PMC3599827. 10. Hunt N.J., Kang S.W.S., Lockwood G.P. et al. Hallmarks of aging in the liver. Comput Struct Biotechnol J. 2019; 17: 1151–61. https://doi.org/10.1016/j.csbj.2019.07.021. PMID: 31462971. PMCID: PMC6709368. 11. Bangru S., Kalsotra A. Cellular and molecular basis of liver regeneration. Semin Cell Dev Biol. 2020; 100: 74–87. https://doi.org/10.1016/j.semcdb.2019.12.004. PMID: 31980376. PMCID: PMC7108750. 12. Palmisano B.T., Zhu L., Stafford J.M. Role of estrogens in the regulation of liver lipid metabolism. Adv Exp Med Biol. 2017; 1043: 227–56. https://doi.org/10.1007/978-3-319-70178-3_12. PMID: 29224098. PMCID: PMC5763482. 13. Nucci R.A.B., Teodoro A.C.S., Neto W.K. et al. Effects of testosterone administration on liver structure and function in aging rats. Aging Male. 2017; 20(2): 134–37. https://doi.org/10.1080/13685538.2017.1284779. PMID: 28590831. 14. Tsuneki H., Tokai E., Nakamura Y. et al. Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice. Diabetes. 2015; 64(2): 459–70. https://doi.org/10.2337/db14-0695. PMID: 25249578. 15. Terziev D., Terzieva D. Experimental data on the role of melatonin in the pathogenesis of nonalcoholic fatty liver disease. Biomedicines. 2023; 11(6): 1722. https://doi.org/10.3390/biomedicines11061722. PMID: 37371817. PMCID: PMC10296645. 16. Giunta S., Xia S., Pelliccioni G., Olivieri F. Autonomic nervous system imbalance during aging contributes to impair endogenous anti-inflammaging strategies. Geroscience. 2024; 46(1): 113–27. https://doi.org/10.1007/s11357-023-00947-7. PMID: 37821752. PMCID: PMC10828245. 17. Amir M., Yu M., He P., Srinivasan S. Hepatic autonomic nervous system and neurotrophic factors regulate the pathogenesis and progression of non-alcoholic fatty liver disease. Front Med (Lausanne). 2020; 7: 62. https://doi.org/10.3389/fmed.2020.00062. PMID: 32175323. PMCID: PMC7056867. 18. Poulose N., Raju R. Aging and injury: Alterations in cellular energetics and organ function. Aging Dis. 2014; 5(2): 101–8. https://doi.org/10.14336/AD.2014.0500101. PMID: 24729935. PMCID: PMC3966668. 19. Кайбышева В.О., Жарова М.Е., Филимендикова К.Ю., Никонов Е.Л. Микробиом человека: возрастные изменения и функции. Доказательная гастроэнтерология. 2020; 9(2): 42–55. (Kaybysheva V.O., Zharova M.E., Filimendikova K.Yu., Nikonov E.L. Human microbiome: age-related changes and functions. Dokazatel’naya gastroenterologiya = Russian Journal of Evidence-Based Gastroenterology. 2020; 9(2): 42–55 (In Russ.)). https://doi.org/10.17116/dokgastro2020902142. EDN: YKXBBQ. 20. Fusco W., Lorenzo M.B., Cintoni M. et al. Short-chain fatty-acid-producing bacteria: Key components of the human gut microbiota. Nutrients. 2023; 15(9): 2211. https://doi.org/10.3390/nu15092211. PMID: 37432351. PMCID: PMC10180739. 21. Zeng S.-Y., Liu Y.-F., Liu J.-H. et al. Potential effects of Akkermansia muciniphila in aging and aging-related diseases: Current evidence and perspectives. Aging Dis. 2023; 14(6): 2015–27. https://doi.org/10.14336/AD.2023.0325. PMID: 37199577. PMCID: PMC10676789. 22. Visekruna A., Luu M. The role of short-chain fatty acids and bile acids in intestinal and liver function, inflammation, and carcinogenesis. Front Cell Dev Biol. 2021; 9: 703218. https://doi.org/10.3389/fcell.2021.703218. PMID: 34381785. PMCID: PMC8352571. 23. Frommherz L., Bub A., Hummel E. et al. Age-related changes of plasma bile acid concentrations in healthy adults – results from the cross-sectional KarMeN Study. PLoS One. 2016; 11(4): e0153959. https://doi.org/10.1371/journal.pone.0153959. PMID: 27092559. PMCID: PMC4836658. 24. Chen Z., Ruan J., Li D. et al. The role of intestinal bacteria and gut-brain axis in hepatic encephalopathy. Front Cell Infect Microbiol. 2021; 10: 595759. https://doi.org/10.3389/fcimb.2020.595759. PMID: 33553004. PMCID: PMC7859631. 25. Wiemann S.U., Satyanarayana A., Tsahuridu M. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 2002; 16(9): 935–42. https://doi.org/10.1096/fj.01-0977com. PMID: 12087054. 26. Chipchase M.D., O’Neill M., Melton D.W. Characterization of premature liver polyploidy in DNA repair (Ercc1)-deficient mice. Hepatology. 2003; 38(4): 958–66. https://doi.org/10.1053/jhep.2003.50421. PMID: 14512883. 27. Лазебник Л.Б., Ильченко Л.Ю. Возрастные изменения печени (клинические и морфологические аспекты). Клиническая геронтология. 2007; 13(1): 3–8. (Lazebnik L.B., Ilchenko L.Yu. Age liver changes (clinical and morphological aspects). Klinicheskaya gerontologiya = Clinical Gerontology. 2007; 13(1): 3–8 (In Russ.)). EDN: JHCYRP. 28. Irvine K.M., Skoien R., Bokil N.J. et al. Senescent human hepatocytes express a unique secretory phenotype and promote macrophage migration. World J Gastroenterol. 2014; 20(47): 17851–62. https://doi.org/10.3748/wjg.v20.i47.17851. PMID: 25548483. PMCID: PMC4273135. 29. Huda N., Liu G., Hong H. et al. Hepatic senescence, the good and the bad. World J Gastroenterol. 2019; 25(34): 5069–81. https://doi.org/10.3748/wjg.v25.i34.5069. PMID: 31558857. PMCID: PMC6747293. 30. Matsutani T., Kang S.C., Miyashita M. et al. Liver cytokine production and ICAM-1 expression following bone fracture, tissue trauma, and hemorrhage in middle-aged mice. Am J Physiol Gastrointest Liver Physiol. 2007; 292(1): G268–74. https://doi.org/10.1152/ajpgi.00313.2006. PMID: 16959950. 31. Aravinthan A., Challis B., Shannon N. et al. Selective insulin resistance in hepatocyte senescence. Exp Cell Res. 2015; 331(1): 38–45. https://doi.org/10.1016/j.yexcr.2014.09.025. PMID: 25263463. 32. Bonnet L., Alexandersson I., Baboota R.K. et al. Cellular senescence in hepatocytes contributes to metabolic disturbances in NASH. Front Endocrinol (Lausanne). 2022; 13: 957616. https://doi.org/10.3389/fendo.2022.957616. PMID: 36072934. PMCID: PMC9441597. 33. Ghiraldini F.G., Silva I.S., Mello M.L.S. Polyploidy and chromatin remodeling in hepatocytes from insulin-dependent diabetic and normoglycemic aged mice. Cytometry A. 2012; 81(9): 755–64. https://doi.org/10.1002/cyto.a.22102. PMID: 22837107. 34. Navarro A., Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol. 2004; 287(5): R1244–49. https://doi.org/10.1152/ajpregu.00226.2004. PMID: 15271654. 35. Daum B., Walter A., Horst A. et al. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc Natl Acad Sci U S A. 2013; 110(38): 15301–6. https://doi.org/10.1073/pnas.1305462110. PMID: 24006361. PMCID: PMC3780843. 36. Aravinthan A.D., Alexander G.J. Hepatocyte senescence explains conjugated bilirubinaemia in chronic liver failure. J Hepatol. 2015; 63(2): 532–33. https://doi.org/10.1016/j.jhep.2015.03.031. PMID: 25839405. 37. Tabibian J.H., O’Hara S.P., Splinter P.L. et al. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology. 2014; 59(6): 2263–75. https://doi.org/10.1002/hep.26993. PMID: 24390753. PMCID: PMC4167827. 38. Ferreira-Gonzalez S., Lu W.-Y., Raven A. et al. Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nat Commun. 2018; 9(1): 1020. https://doi.org/10.1038/s41467-018-03299-5. PMID: 29523787. PMCID: PMC5844882. 39. Cazzagon N., Sarcognato S., Floreani A. et al. Cholangiocyte senescence in primary sclerosing cholangitis is associated with disease severity and prognosis. JHEP Rep. 2021; 3(3): 100286. https://doi.org/10.1016/j.jhepr.2021.100286. PMID: 34041468. PMCID: PMC8141934. 40. Meadows V., Baiocchi L., Kundu D. et al. Biliary epithelial senescence in liver disease: There will be SASP. Front Mol Biosci. 2021; 8: 803098. https://doi.org/10.3389/fmolb.2021.803098. PMID: 34993234. PMCID: PMC8724525. 41. Al Suraih M.S., Trussoni C.E., Splinter P.L. et al. Senescent cholangiocytes release extracellular vesicles that alter target cell phenotype via the epidermal growth factor receptor. Liver Int. 2020; 40(10): 2455–68. https://doi.org/10.1111/liv.14569. PMID: 32558183. PMCID: PMC7669612. 42. Maeso-Díaz R., Ortega-Ribera M., Fernández-Iglesias A. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell. 2018; 17(6): e12829. https://doi.org/10.1111/acel.12829. PMID: 30260562. PMCID: PMC6260924. 43. Grosse L., Bulavin D.V. LSEC model of aging. Aging (Albany NY). 2020; 12(11): 11152–60. https://doi.org/10.18632/aging.103492. PMID: 32535553. PMCID: PMC7346042. 44. Le Couteur D.G., Cogger V.C., McCuskey R.S. et al. Age-related changes in the liver sinusoidal endothelium: A mechanism for dyslipidemia. Ann N Y Acad Sci. 2007; 1114: 79–87. https://doi.org/10.1196/annals.1396.003. PMID: 17804522. 45. Cogger V.C., Svistounov D., Warren A. et al. Liver aging and pseudocapillarization in a Werner syndrome mouse model. J Gerontol A Biol Sci Med Sci. 2014; 69(9): 1076–86. https://doi.org/10.1093/gerona/glt169. PMID: 24149428. PMCID: PMC4158411. 46. Duan J.-L., Liu J.-J., Ruan B. et al. Age-related liver endothelial zonation triggers steatohepatitis by inactivating pericentral endothelium-derived C-kit. Nat Aging. 2023; 3(3): 258–74. https://doi.org/10.1038/s43587-022-00348-z. PMID: 37118422. 47. van der Loo B., Labugger R., Aebischer C.P. et al. Age-related changes of vitamin A status. J Cardiovasc Pharmacol. 2004; 43(1): 26–30. https://doi.org/10.1097/00005344-200401000-00005. PMID: 14668564. 48. Krizhanovsky V., Yon M., Dickins R.A. et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008; 134(4): 657–67. https://doi.org/10.1016/j.cell.2008.06.049. PMID: 18724938. PMCID: PMC3073300. 49. Verma S., Tachtatzis P., Penrhyn-Lowe S. et al. Sustained telomere length in hepatocytes and cholangiocytes with increasing age in normal liver. Hepatology. 2012; 56(4): 1510–20. https://doi.org/10.1002/hep.25787. PMID: 22504828. 50. Cheng N., Kim K.-H., Lau L.F. Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight. 2022; 7(14): e158207. https://doi.org/10.1172/jci.insight.158207. PMID: 35708907. PMCID: PMC9431681. 51. Bloomer S.A., Moyer E.D. Hepatic macrophage accumulation with aging: Cause for concern? Am J Physiol Gastrointest Liver Physiol. 2021; 320(4): G496–G505. https://doi.org/10.1152/ajpgi.00286.2020. PMID: 33470190. 52. Heil M.F., Dingman A.D., Garvey J.S. Antigen handling in ageing. III. Age-related changes in antigen handling by liver parenchymal and nonparenchymal cells. Mech Ageing Dev. 1984; 26(2–3): 327–40. https://doi.org/10.1016/0047-6374(84)90104-0. PMID: 6482526. 53. Stahl E.C., Haschak M.J., Popovic B., Brown B.N. Macrophages in the aging liver and age-related liver disease. Front Immunol. 2018; 9: 2795. https://doi.org/10.3389/fimmu.2018.02795. PMID: 30555477. PMCID: PMC6284020. 54. Hilmer S.N., Cogger V.C., Le Couteur D.G. Basal activity of Kupffer cells increases with old age. J Gerontol A Biol Sci Med Sci. 2007; 62(9): 973–78. https://doi.org/10.1093/gerona/62.9.973. PMID: 17895435. 55. Sun W.B., Li K., Ma R.L., Han B.L. Effect of aging on Kupffer cell membrane phospholipid function: Modulation by vitamin E. World J Gastroenterol. 1996; 2(4): 215–17. https://doi.org/10.3748/wjg.v2.i4.215. 56. Li L., Cui L., Lin P. et al. Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers. Cell Stem Cell. 2023; 30(3): 283–299.e9. https://doi.org/10.1016/j.stem.2023.01.009. PMID: 36787740. 57. Aging Biomarker Consortium, Jiang M., Zheng Z., Wang X. et al. A biomarker framework for liver aging: The Aging Biomarker Consortium consensus statement. Life Medicine. 2024; 3(1): lnae004. https://doi.org/10.1093/lifemedi/lnae004.
Veronika A. Prikhodko, PhD (Biology), senior lecturer of the Department of pharmacology and clinical pharmacology, Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of Russia. Address: 197022, Saint Petersburg, 14, lit. A Professora Popova St.
E-mail: veronika.prihodko@pharminnotech.com
ORCID: https://orcid.org/0000-0002-4690-1811
Sergey V. Okovityi, MD, Dr. Sci. (Medicine), professor, head of the Department of pharmacology and clinical pharmacology of the Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of Russia, professor of the scientific, clinical and educational center for gastroenterology and hepatology, Saint Petersburg State University. Address: 197022, Saint Petersburg, 14, lit. A Professora Popova St.
E-mail: sergey.okovity@pharminnotech.com
ORCID: https://orcid.org/0000-0003-4294-5531