Современные возможности компьютерной томографии в диагностике ишемической болезни сердца


DOI: https://dx.doi.org/10.18565/therapy.2019.4.63-69

Т.Н. Веселова, С.К. Терновой

1) ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, г. Москва; 2) ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский университет)» Минздрава России
Современные возможности компьютерной томографии (КТ) коронарных артерий позволяют с высокой точность оценить состояние просвета коронарного русла, состав атеросклеротической бляшки и ремоделирование артерии в месте стеноза. В последние годы были определены КТ-признаки нестабильности бляшки, позволяющие прогнозировать риск развития острого коронарного синдрома (ОКС). В данном обзоре представлены данные многоцентровых рандомизированных исследований по оценке эффективности КТ-ангиографии (КТА) в обследовании больных стабильной ишемической болезни сердца (ИБС) и ОКС и освещены перспективные направления КТ-диагностики функциональной значимости стеноза и ишемии миокарда.
Ключевые слова: коронарная КТ-ангиография, атеросклеротическая бляшка, ишемическая болезнь сердца

Литература


1. Mowatt G., Cummins E., Waugh N. et al. Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technology Assessment. 2008; 12(3–4): 9–143.

2. Budoff M.J., Dowe D., Jollis J.G. et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. Journal American College Cardiology. 2008; 52: 1724–32.

3. Tesche C., De Cecco C.N., Caruso D. et al. Coronary CT angiography derived morpho- logical and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. Journal Cardiovascular Computer Tomography. 2016; 10(3): 199–206.

4. Chow B.J., Small G., Yam Y. et al. Incremental prognostic value of cardiac computed tomography in coronary artery disease using CONFIRM: Coronary computed tomography angiography evaluation for clinical outcomes: an International Multicenter registry. Circulation Cardiovascular Imaging. 2011; 4(5): 463–72.

5. Montalescot G., Sechtem U., Achenbach S. et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. European Heart Journal. 2013; 34: 2949–3003.

6. Roff M., Patrono C., Collet J.P. et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). European Heart Journal. 2016; 37(3): 267–315. https://doi.org/10.1093/eurheartj/ehv320

7. Веселова Т.Н., Меркулова И.Н., Барышева Н.А., Терновой С.К., Шария М.А., Руда М.Я. Сравнение особенностей атеросклеротических бляшек в коронарных артериях у больных с острым коронарным синдромом и стабильной формой ишемической болезни сердца по данным мультиспиральной компьютерной томографии. Кардиология. 2013; 53(12): 14–20.

8. Нестабильная стенокардия и инфаркт миокарда без стойких подъемов сегмента ST на электокардиограмме (под общ. ред. Е.И. Чазова, Ю.А. Карпова. 2-е изд., исправл. и доп.). Кардиология: новости, мнения, обучение. 2014: 1; 67–78.

9. Веселова Т.Н., Шабанова М.С., Миронов В.М., Меркулова И.Н., Терновой С.К. Компьютерная томография в оценке состояния атеросклеротических бляшек коронарных артерий при сравнении с внутрисосудистым ультразвуковым исследованием. Кардиология. 2017: 1; 42–47.

10. Терновой С.К., Веселова Т.Н. Выявление нестабильных бляшек в коронарных артериях с помощью мультиспиральной компьютерной томографии. Российский электронный журнал лучевой диагностики. 2014; 4(1): 7–14.

11. Douglas P.S., Hoffmann U., Patel M.R. et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015; 372: 1291–1300.

12. SCOT-HEART investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015; 385: 2383–91.

13. Foy A.J., Dhruva S.S., Peterson B., Mandrola J.M., Morgan D.J., Redberg R.F. Coronary computed tomography angiography vs functional stress testing for patients with suspected coronary artery disease: a systematic review and meta-analysis. JAMA Intern Med. 2017; 177: 1623–31.

14. Bittencourt M.S., Hulten E.A., Murthy V.L. et al. Clinical Outcomes After Evaluation of Stable Chest Pain by Coronary Computed Tomographic Angiography Versus Usual Care: A Meta-Analysis. Circ Cardiovasc Imaging. 2016; 9: e004419.

15. Williams M.C., Hunter A., Shah A.S.V. et al. Use of coronary computed tomographic angiography to guide management of patients with coronary disease. J Am Coll Cardiol. 2016; 67(15): 1759–68. doi: 10.1016/j.jacc.2016.02.026.

16. Raff G.L., Hoffmann U., Udelson J.E. Trials of Imaging Use in the Emergency Department for Acute Chest Pain. Cardiovasc Imaging. JACC. 2017; 10(3): 338–49. doi: 10.1016/j.jcmg.2016.10.015.

17. Motoyama S., Kondo T., Anno H. Atherosclerotic plaque characterization by 0.5-mm-slice multislice computed tomographic imaging. Circ J. 2007; 71(3): 363–66. doi: http://doi.org/10.1253/circj.71.363://doi.org/1

18. Ferencik M., Mayrhofer T., Bittner D.O. et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the PROMISE randomized clinical trial. JAMA Cardiol. 2018; 3:144–52.

19. Ko B.S., Cameron J.D., Leung M. et al. Combined CT coronary angiography and stress myocardial perfusion imaging for hemodynamically significant stenoses in patients with suspected coronary artery disease: a comparison with fractional flow reserve. JACC Cardiovasc Imaging. 2012; 5(11): 1097–1111.

20. Nasis A., Ko B.S., Leung M.C. et al. Diagnostic accuracy of combined coronary angiography and adenosine stress myocardial perfusion imaging using 320-detector computed tomography: pilot study. Eur Radiol. 2013; 23: 1812–21.

21. Tiago A. Magalhães, Satoru Kishi, Richard George, et al. Combining coronary angiography and myocardial perfusion by computed tomography in the identification of flow-limiting stenosis – The CORE320 study: a coronary CTA/myocardial CTP integrated analysis. J Cardiovasc Comput Tomogr. 2015; 9(5): 438–45.

22. Pijls N.H., van Son J.A., Kirkeeide R.L., De Bruyne B., Gould K.L. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993; 87(4): 1354–67.

23. De Bruyne B., Baudhuin T., Melin J.A. et al. Coronary flow reserve calculated from pressure measurements in humans: validation with positron emission tomography. Circulation 1994; 89(3): 1013–22.

24. De Bruyne B., Fearon W.F., Pijls N.H. et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014; 371(13): 1208–17.

25. Tonino P.A., De Bruyne B., Pijls N.H. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med .2009; 360(3): 213–24.

26. Norgaard B.L., Leipsic J., Gaur S. et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J. Am. Coll. Cardiol. 2014; 63: 1145–55.

27. Min J.K., Koo B.K., Erglis A. et al. Effect of image quality on diagnostic accuracy of noninvasive fractional flow reserve: results from the prospective multicenter international DISCOVER-FLOW study. Journal Cardiovascular Computer Tomography. 2012; 6(3): 191–99.

28. Nakazato R., Park H.B., Berman D.S. et al. Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circulation Cardiovascular Imaging. 2013; 6(6): 881–89.

29. Norgaard B.L., Leipsic J., Gaur S. et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using ct angiography: next steps). Journal American College Cardiology. 2014; 63(12): 1145–55.

30. Douglas P.S., De Bruyne B., Pontone G. et al. 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM Study. Journal American College Cardiology. 2016; 68(5): 435–45.


Об авторах / Для корреспонденции


Татьяна Николаевна Веселова, д.м.н., профессор, ст.н.с. отдела томографии ФГБУ «НМИЦ кардиологии» Мин­здрава России. Адрес: 121552, г. Москва, 3-я Черепковская ул., д. 15А. Тел.: 8 (495) 150-44-19; 8 (800) 707-44-19.
Сергей Константинович Терновой, д.м.н., профессор, академик РАН, главный ведущий сотрудник отдела томографии ФГБУ «НМИЦ кардиологии» Минздрава России, зав. кафедрой лучевой диагностики и лучевой терапии ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России. Адрес: 121552, г. Москва, 3-я Черепковская ул., д. 15А. Тел.: 8 (495) 150-44-19; 8 (800) 707-44-19. E-mail: prof_ternovoy@list.ru


Бионика Медиа