Обзор современных возможностей управления сердечно-сосудистыми рисками у пациентов с сахарным диабетом 2-го типа


DOI: https://dx.doi.org/10.18565/therapy.2021.9.155-169

Т.Ю. Демидова, А.М. Мкртумян

1) ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, г. Москва; 2) ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России; 3) ГБУЗ «Московский клинический научный центр им. А.С. Логинова» Департамента здравоохранения города Москвы
Аннотация: Оптимальное ведение пациентов с сахарным диабетом 2-го типа (СД 2) в связи с выходом новых препаратов и эволюцией парадигмы лечения позволяет существенно улучшить прогноз при этом заболевании. Однако в клинической практике современные достижения в области управления сердечно-сосудистыми рисками у пациентов с СД 2 по-прежнему представлены недостаточно широко. Это вступает в некоторое противоречие с колоссальной потребностью пациентов в возможной модификации естественного течения диабета. Цель данного обзора – привести современный взгляд на проблему лечения СД 2 с учетом терапевтических возможностей для разных групп пациентов. В обзор включены обоснование и современная стратификация исходного кардиоваскулярного риска у пациентов с СД 2, данные клинических исследований и анализов применительно к каждой конкретной группе пациентов, а также описание научного инструментария для более широкой практической интерпретации результатов этих исследований.

Литература



  1. Kannel W.B., McGee D.L. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979; 241(19): 2035–38. doi: 10.1001/jama.1979.03290450033020.

  2. O’Donnella C.J., Elosua R.

  3. Emerging Risk Factors Collaboration; Di Angelantonio E., Kaptoge S., Wormser D. et al. Association of cardiometabolic multimorbidity with mortality. JAMA. 2015; 314(1): 52–60. doi: 10.1001/jama.2015.7008.

  4. Haffner S.M., Lehto S., Ronnemaa T. et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998; 339(4): 229–34. doi: 10.1056/NEJM199807233390404.

  5. Wright A.K., Suarez-Ortegon M.F., Read S.H. et al. Risk factor control and cardiovascular event risk in people with type 2 diabetes in primary and secondary prevention settings. Circulation. 2020; 142(20): 1925–36. doi: 10.1161/CIRCULATIONAHA.120.046783.

  6. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 10-й выпуск. М. 2021; 221 с.

  7. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021; 42(25): 2439–54. doi: 10.1093/eurheartj/ehab309.

  8. Garber A.J., Handelsman Y., Grunberger G. et al. Consensus statement by the american association of clinical endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2020 executive summary. Endocr Pract. 2020; 26(1): 107–39. doi: 10.4158/CS-2019-0472.

  9. Cosentino F., Grant P.J., Aboyans V. et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020; 41(2): 255–323. doi: 10.1093/eurheartj/ehz486.

  10. Seidu S., Cos X., Brunton S. et al. A disease state approach to the pharmacological management of type 2 diabetes in primary care: A position statement by Primary Care Diabetes Europe. Prim Care Diabetes. 2021; 15(1): 31–51. doi: 10.1016/j.pcd.2020.05.004.

  11. Einarson T.R., Acs A., Ludwig C., Panton U.H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018; 17(1): 83. doi: 10.1186/s12933-018-0728-6.

  12. Mosenzon O., Alguwaihes A., Leon J.L.A. et al. CAPTURE: a multinational, cross-sectional study of cardiovascular disease prevalence in adults with type 2 diabetes across 13 countries. Cardiovasc Diabetol. 2021; 20(1): 154. doi: 10.1186/s12933-021-01344-0.

  13. Goderis G., Vaes B., Mamouris P. et al. Prevalence of atherosclerotic cardiovascular disease, heart failure, and chronic kidney disease in patients with type 2 diabetes mellitus: A Primary Care Research Network-based Study. Exp Clin Endocrinol Diabetes. 2021. doi: 10.1055/a-1508-3912. Online ahead of print.

  14. Caparrotta T.M., Blackbourn L.A.K., McGurnaghan S.J. et al. Scottish Diabetes Research Network–Epidemiology Group. Prescribing paradigm shift? Applying the 2019 European Society of Cardiology – led guidelines on diabetes, prediabetes, and cardiovascular disease to assess eligibility for sodium-glucose cotransporter 2 inhibitors or glucagon-like peptide 1 receptor agonists as first-line monotherapy (or add-on to metformin monotherapy) in type 2 diabetes in Scotland. Diabetes Care. 2020; 43(9): 2034–41. doi: 10.2337/dc20-0120.

  15. Shah A.D., Langenberg C., Rapsomaniki E. et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 19 million people. Lancet Diabetes Endocrinol. 2015; 3(2): 105–13. doi: 10.1016/S2213-8587(14)70219-0.

  16. Дедов И.И., Шестакова М.В., Викулова О.К. с соавт. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021; 3: 204–221.

  17. Jenca D., Melenovsky V., Stehlik J. et al. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail. 2021; 8(1): 222–37. doi: 10.1002/ehf2.13144.

  18. Berg D.D., Kolkailah A.A., Sarraju A. et al. Interpreting absolute and relative risk reduction in the context of recent cardiovascular outcome trials in patients with type 2 diabetes. Curr Diab Rep. 2021; 21(11): 45. doi: 10.1007/s11892-021-01417-0.

  19. Altman D.G., Andersen P.K. Calculating the number needed to treat for trials where the outcome is time to an event. BMJ. 1999; 319(7223): 1492–95. doi: 10.1136/bmj.319.7223.1492.

  20. Jansen J.P., Khalid J.M., Smyth M.D., Patel H. The number needed to treat and relevant between-trial comparisons of competing interventions. Clinicoecon Outcomes Res. 2018; 10: 865–71. doi: 10.2147/CEOR.S180491.

  21. Laiteerapong N., Ham S.A., Gao Y. et al. The legacy effect in type 2 diabetes: impact of early glycemic control on future complications (The Diabetes & Aging Study). Diabetes Care. 2019; 42(3): 416–26. doi: 10.2337/dc17-1144.

  22. ACCORD Study Group, Gerstein H.C., Miller M.E., Genuth S. et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011; 364(9): 818–28. doi: 10.1056/NEJMoa1006524.

  23. Control Group, Turnbull F.M., Abraira C., Anderson R.J. et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009; 52(11): 2288–98. doi: 10.1007/s00125-009-1470-0.

  24. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998; 352(9131): 854–65.

  25. Gaede P., Vedel P., Larsen N. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003; 348(5): 383–93. doi: 10.1056/NEJMoa021778.

  26. Gade P., Oellgaard J., Carstensen B. et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the STENO-2 randomised trial. Diabetologia. 2016; 59(11): 2298–307. doi: 10.1007/s00125-016-4065-6.

  27. Oellgaard J., Gade P., Rossing P. et al. Reduced risk of heart failure with intensified multifactorial intervention in individuals with type 2 diabetes and microalbuminuria: 21 years of follow-up in the randomised STENO-2 study. Diabetologia. 2018; 61(8): 1724–33. doi: 10.1007/s00125-018-4642-y.

  28. Kahn S.E., Haffner S.M., Heise M.A. et al.; ADOPT Study Group. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006; 355(23) :2427–43. doi: 10.1056/NEJMoa066224.

  29. Nissen S.E., Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007; 356(24): 2457–71. doi: 10.1056/NEJMoa072761.

  30. Khunti K., Gomes M.B., Pocock S. et al. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: A systematic review. Diabetes Obes Metab. 2018; 20(2): 427–37. doi: 10.1111/dom.13088.

  31. Sinha B., Ghosal S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res Clin Pract. 2019; 150: 8–16. doi: 10.1016/j.diabres.2019.02.014.

  32. Matthews D.R., Paldanius P.M., Proot P. et al. VERIFY study group. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): A 5-year, multicentre, randomised, double-blind trial. Lancet. 2019; 394(10208): 1519–29. doi: 10.1016/S0140-6736(19)32131-2.

  33. Wexler D.J., Krause-Steinrauf H., Crandall J.P. et al. GRADE Research Group. Baseline characteristics of randomized participants in the glycemia reduction approaches in diabetes: A comparative effectiveness study (GRADE). Diabetes Care. 2019; 42(11): 2098–107. doi: 10.2337/dc19-0901.

  34. Nathan D.M. et al. Results of the glycemia reduction approaches in diabetes -- a comparative effectiveness (GRADE) study. 3-CT-SY18. Presented at: American Diabetes Association Scientific Sessions. June 25–29, 2021.

  35. Goldenberg R., Aroda V., Bardtrum L. et al. Achievement of near-normal hba1c with early initiation of oral semaglutide: An exploratory subgroup analysis of PIONEER 1. Can J Diabetes. 2021; 45(7): S28–S29 (abstract only). doi: 10.1016/j.jcjd.2021.09.085.

  36. Rosenstock J., Cariou B., Christiansen E. et al. 670-P: Time spent in glycemic control after initiating treatment with oral semaglutide vs. empagliflozin: An exploratory analysis of the PIONEER 2 trial. Diabetes. 2021; 70(Suppl 1): -. doi: 10.2337/db21-670-P.

  37. Buse J.B., Bode B.W., Mertens A. et al. PIONEER 7 investigators. Long-term efficacy and safety of oral semaglutide and the effect of switching from sitagliptin to oral semaglutide in patients with type 2 diabetes: a 52-week, randomized, open-label extension of the PIONEER 7 trial. BMJ Open Diabetes Res Care. 2020; 8(2): e001649. doi: 10.1136/bmjdrc-2020-001649.

  38. Hedrington M.S., Davis S.N. Oral semaglutide for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2019; 20(2): 133–41. doi: 10.1080/14656566.2018.1552258.

  39. Lim G.B. GLP1R agonists: Primary cardiovascular prevention and oral administration. Nat Rev Cardiol. 2019; 16(8): 453. doi: 10.1038/s41569-019-0232-z.

  40. URL: https://ascend.medsci.ox.ac.uk/news/major-new-study-could-help-protect-millions-with-type-2-diabetes-from-cardiovascular-disease (date of access – 01.10.2021).

  41. Buse J.B., Wexler D.J., Tsapas A. et al. 2019 update to: Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020; 43(2): 487–93. doi: 10.2337/dci19-0066.

  42. Davies M.J., Kloecker D.E., Webb D.R. et al. Number needed to treat in cardiovascular outcome trials of glucagon-like peptide-1 receptor agonists: A systematic review with temporal analysis. Diabetes Obes Metab. 2020; 22(9): 1670–77. doi: 10.1111/dom.14066.

  43. Natali A., Nesti L., Trico D., Ferrannini E. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors on cardiac structure and function: a narrative review of clinical evidence. Cardiovasc Diabetol. 2021; 20(1): 196. doi: 10.1186/s12933-021-01385-5.

  44. Zinman B., Wanner C., Lachin J.M. et al. EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373(22): 2117–28. doi: 10.1056/NEJMoa1504720.

  45. Alzaid A. Empa’s new clothes: The untold story of the EMPA-REG outcome trial. Diabetes Technol Ther. 2017; 19(6): 324–27. doi: 10.1089/dia.2017.0033.

  46. FDA Briefing Document Endocrine and Metabolic Drug Advisory Committee Meeting June 28, 2016. URL: https://www.fda.gov/media/98910/download (date of access – 01.10.2021).

  47. Neal B., Perkovic V., Mahaffey K.W. et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377(7): 644–57. doi: 10.1056/NEJMoa1611925.

  48. Neal B., Perkovic V., Mahaffey K.W. et al. Optimizing the analysis strategy for the CANVAS Program: A prespecified plan for the integrated analyses of the CANVAS and CANVAS-R trials. Diabetes Obes Metab. 2017; 19(7): 926–35. doi:10.1111/dom.12924.

  49. Wiviott S.D., Raz I., Bonaca M.P. et al. DECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380(4): 347–57. doi: 10.1056/NEJMoa1812389.

  50. Furtado R.H.M., Bonaca M.P., Raz I. et al. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and previous myocardial infarction. Circulation. 2019; 139(22): 2516–27. doi: 10.1161/CIRCULATIONAHA.119.039996.

  51. Fitchett D., Inzucchi S.E., Zinman B. et al. Mediators of the improvement in heart failure outcomes with empagliflozin in the EMPA-REG OUTCOME trial. ESC Heart Fail. 2021. doi: 10.1002/ehf2.13615. Online ahead of print.

  52. Li J., Woodward M., Perkovic V. et al. Mediators of the effects of canagliflozin on heart failure in patients with type 2 diabetes. JACC Heart Fail. 2020; 8(1): 57–66. doi: 10.1016/j.jchf.2019.08.004.

  53. Berg D., Wiviott S., Goodrichet E. et al. Mediation analysis for dapagliflozin and the reduction in hospitalization for heart failure in DECLARE-TIMI 58. J Am Coll Cardiol. 2021; 77(18 Suppl 1): 869. doi: 10.1016/S0735-1097(21)02228-2.

  54. Packer M. SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: A paradigm shift in understanding their mechanism of action. Diabetes Care. 2020; 43(3): 508–11. doi: 10.2337/dci19-0074.

  55. McMurray J.J.V., Solomon S.D., Inzucchi S.E. et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381(21): 1995–2008. doi: 10.1056/NEJMoa1911303.

  56. Packer M., Anker S.D., Butler J. et al. EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383(15): 1413–24. doi: 10.1056/NEJMoa2022190.

  57. Zelniker T.A., Wiviott S.D., Raz I. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019; 393(10166): 31–39. doi: 10.1016/S0140-6736(18)32590-X.

  58. Berg D.D., Wiviott S.D., Scirica B.M. et al. A biomarker-based score for risk of hospitalization for heart failure in patients with diabetes. Diabetes Care. 2021; 44(11): 2573–81. doi: 10.2337/dc21-1170.

  59. Berg D.D., Wiviott S.D., Scirica B.M. et al. Heart failure risk stratification and efficacy of sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus. Circulation. 2019; 140(19): 1569–77. doi: 10.1161/CIRCULATIONAHA.119.042685.

  60. Huthmacher J.A., Meier J.J., Nauck M.A. Efficacy and safety of short- and long-acting glucagon-like peptide 1 receptor agonists on a background of basal insulin in type 2 diabetes: A meta-analysis. Diabetes Care. 2020; 43(9): 2303–12. doi: 10.2337/dc20-0498.

  61. Sinha B., Ghosal S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res Clin Pract. 2019; 150: 8–16. doi: 10.1016/j.diabres.2019.02.014.

  62. Longato E., Di Camillo B., Sparacino G. et al. Cardiovascular effectiveness of human-based vs. exendin-based glucagon like peptide-1 receptor agonists: a retrospective study in patients with type 2 diabetes. Eur J Prev Cardiol. 2021; 28(1): 22–29. doi: 10.1093/eurjpc/zwaa081.

  63. Nauck M.A., Quast D.R., Wefers J., Meier J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol Metab. 2021; 46: 101102. doi: 10.1016/j.molmet.2020.101102.

  64. Marso S.P., Daniels G.H., Brown-Frandsen K. et al. LEADER Steering Committee; LEADER Trial Investigators. liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016; 375(4): 311–22. doi: 10.1056/NEJMoa1603827.

  65. Verma S., Poulter N.R., Bhatt D.L. et al. Effects of liraglutide on cardiovascular outcomes in patients with type 2 diabetes mellitus with or without history of myocardial infarction or stroke. Circulation. 2018; 138(25): 2884–94. doi: 10.1161/CIRCULATIONAHA.118.034516.

  66. le Roux C.W., Astrup A., Fujioka K. et al. SCALE Obesity Prediabetes NN8022-1839 Study Group. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: A randomised, double-blind trial. Lancet. 2017; 389(10077): 1399–1409. doi: 10.1016/S0140-6736(17)30069-7.

  67. Gerstein H.C., Colhoun H.M., Dagenais G.R. et al. REWIND Investigators. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet. 2019; 394(10193): 121–30. doi: 10.1016/S0140-6736(19)31149-3.

  68. Marso S.P., Bain S.C., Consoli A. et al. SUSTAIN-6 Investigators. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375(19): 1834–44. doi: 10.1056/NEJMoa1607141.

  69. Verma S., Fainberg U., Husain M. et al. Applying REWIND cardiovascular disease criteria to SUSTAIN 6 and PIONEER 6: An exploratory analysis of cardiovascular outcomes with semaglutide. Diabetes Obes Metab. 2021; 23(7): 1677–80. doi:10.1111/dom.14360.

  70. Husain M., Birkenfeld A.L., Donsmark M. et al. PIONEER 6 Investigators. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019; 381(9): 841–51. doi: 10.1056/NEJMoa1901118.

  71. Husain M., Bain S.C., Jeppesen O.K. et al. Semaglutide (SUSTAIN and PIONEER) reduces cardiovascular events in type 2 diabetes across varying cardiovascular risk. Diabetes Obes Metab. 2020; 22(3): 442–51. doi: 10.1111/dom.13955.

  72. Husain M., Bain S.C., Holst A.G. et al. Effects of semaglutide on risk of cardiovascular events across a continuum of cardiovascular risk: Combined post hoc analysis of the SUSTAIN and PIONEER trials. Cardiovasc Diabetol. 2020; 19(1): 156. doi: 10.1186/s12933-020-01106-4.

  73. Evans L.M., Mellbin L., Johansen P. et al. A population-adjusted indirect comparison of cardiovascular benefits of once-weekly subcutaneous semaglutide and dulaglutide in the treatment of patients with type 2 diabetes, with or without established cardiovascular disease. Endocrinol Diabetes Metab. 2021; 4(3): e00259. doi: 10.1002/edm2.259.

  74. A Heart Disease Study of Semaglutide in Patients With Type 2 Diabetes (SOUL). URL: https://clinicaltrials.gov/ct2/show/NCT03914326 (date of access – 01.10.2021).

  75. Gay H., Yu J., Petito L. et al. Abstract 14678: Prevalence of SGLT-2 inhibitor and GLP-1 receptor agonist prescriptions in patients with comorbid diabetes and cardiovascular disease in an integrated academic health system. Circulation. 2020; 142: A14678. doi: 10.1161/circ.142.suppl_3.14678.

  76. Arnold S.V., Tang F., COOPER A. et al. 324-OR: Global use of SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes: Results from DISCOVER. Diabetes. 2021; 70(Supplement 1): -. doi: 10.2337/db21-324-OR.

  77. Drucker D.J. Coronavirus infections and type 2 diabetes – shared pathways with therapeutic implications. Endocr Rev. 2020; 41(3): bnaa011. doi: 10.1210/endrev/bnaa011.

  78. Демидова Т.Ю., Лобанова К.Г., Переходов С.Н. с соавт. Клинико-лабораторная характеристика пациентов с COVID-19 и сопутствующим сахарным диабетом 2-го типа. Кардиоваскулярная терапия и профилактика. 2021; 1: 47–58.

  79. Kosiborod M.N., Esterline R., Furtado R.H.M. et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021; 9(9): 586–94. doi: 10.1016/S2213-8587(21)00180-7.

  80. Hariyanto T.I., Intan D., Hananto J.E. et al. Pre-admission glucagon-like peptide-1 receptor agonist (GLP-1RA) and mortality from coronavirus disease 2019 (Covid-19): A systematic review, meta-analysis, and meta-regression. Diabetes Res Clin Pract. 2021; 179: 109031. doi: 10.1016/j.diabres.2021.109031.

  81. Anderson J.E. Combining glucagon-like peptide 1 receptor agonists and sodium-glucose cotransporter 2 inhibitors to target multiple organ defects in type 2 diabetes. Diabetes Spectr. 2020; 33(2): 165–74. doi: 10.2337/ds19-0031.


Об авторах / Для корреспонденции


Татьяна Юльевна Демидова, д.м.н., профессор, зав. кафедрой эндокринологии лечебного факультета ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России. Адрес: 109263, г. Москва, ул. Шкулева, д. 4, к. 1. E-mail: t.y.demidova@gmail.com. ORCID: 0000-0001-6385-540X. SPIN: 9600-9796. Scopus Author ID: 7003771623
Ашот Мусаелович Мкртумян, д.м.н., профессор, зав. кафедрой эндокринологии и диабетологии лечебного факультета ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России, руководитель научного отдела эндокринных и метаболических нарушений ГБУЗ «Московский клинический научный центр им. А.С. Логинова» Департамента здравоохранения города Москвы, заслуженный врач РФ. Адрес: 111123, г. Москва, шоссе Энтузиастов, д. 86, к. 8. SPIN-код: 1980-8700, AuthorID: 513441


Похожие статьи


Бионика Медиа