Pharmacokinetics of monoclonal antibodies


DOI: https://dx.doi.org/10.18565/therapy.2020.2.114-122

Talibov O.B.

A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia
This is the summary on pharmacokinetics of monoclonal antibodies. Monoclonal antibodies are proteins, and, therefore, have special pharmacokinetics parameters.
After oral administration, not more than 1–2% of the total dose will be absorbed.
Monoclonal antibodies are usually administered by intravenous injections and subcutaneous injections; intramuscular injections are used less frequently. Time to maximum concentration is longer (from 2 to 14 days) after subcutaneous injections.
Drug distribution profile can be described using classic two compartment model, with 2–3L central compartment and 8–20L peripheral compartment.
Elimination is mediated mainly by specific target-based mechanisms. Half-life time may vary from 1 week to 18–21 days. Monoclonal antibodies are eliminated primarily via intracellular lysosomal degradation to short peptides and amino acids.
General immune status, as well as total amount of drug target units may have an impact on elimination; therapeutic response may lead to reduced elimination rate.
Non-linear kinetics was observed for moderate and high doses; this may be explained by saturation of receptors that mediate elimination.

Literature



  1. Ryman J.T., Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017 Sep; 6(9): 576–88. doi: 10.1002/psp4.12224.

  2. Liu J.K. The history of monoclonal antibody development – progress, remaining challenges and future innovations. Ann Med Surg (Lond). 2014; 3(4): 113–16. doi:10.1016/j.amsu.2014.09.001/

  3. Morishita M., Peppas N.A. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today. 2006 Oct; 11(19–20): 905–10.

  4. Singh R., Singh S., Lillard J.W. Jr. Past, present, and future technologies for oral delivery of therapeutic proteins. J Pharm Sci. 2008 Jul; 97(7): 2497–523

  5. Zhao L., Ji P., Li Z. et al. The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. J Clin Pharmacol. 2013 Mar; 53(3): 314–25. doi: 10.1002/jcph.4.

  6. Dirks N.L., Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010 Oct; 49(10): 633–59. doi: 10.2165/11535960-000000000-00000

  7. Stebbings R., Findlay L., Edwards C. et al. «Cytokine storm» in the phase I trial of monoclonal antibody TGN1412: better understanding the causes to improve preclinical testing of immunotherapeutics. J Immunol. 2007 Sep 1; 179(5): 3325–31.

  8. Tyrsin D., Chuvpilo S., Matskevich A. et al. From TGN1412 to TAB08: the return of CD28 superagonist therapy to clinical development for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2016 Jul–Aug; 34(4 Suppl 98): 45–48.

  9. Glassman P.M., Abuqayyas L., Balthasar J.P. Assessments of antibody biodistribution. J Clin Pharmacol. 2015 Mar; 55 Suppl 3: S29–38. doi: 10.1002/jcph.365.

  10. Diao L., Meibohm B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet. 2013 Oct; 52(10): 855–68. doi: 10.1007/s40262-013-0079-0.

  11. Dickinson B.L., Badizadegan K., Wu Z. et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest. 1999 Oct; 104(7): 903–11.

  12. Claypool S.M., Dickinson B.L., Wagner J.S. et al. Bidirectional transepithelial IgG transport by a strongly polarized basolateral membrane Fcgamma-receptor. Mol Biol Cell. 2004; 15(4): 1746–59.

  13. Bell D.R., Watson P.D., Renkin E.M. Exclusion of plasma proteins in interstitium of tissues from the dog hind paw. Am J Physiol. 1980 Oct; 239(4): H532–H538.

  14. Triacca V., Guc E., Kilarski W.W. et al. Transcellular pathways in lymphatic endothelial cells regulate changes in solute transport by fluid stress. Circ Res. 2017 Apr 28; 120(9): 1440–52. doi: 10.1161/CIRCRESAHA.116.309828.

  15. Ovacik M., Lin K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci. 2018; 11(6): 540–52. doi: 10.1111/cts.12567.

  16. Wang J., Iyer S., Fielder P.J. et al. Projecting human pharmacokinetics of monoclonal antibodies from nonclinical data: comparative evaluation of prediction approaches in early drug development. Biopharm Drug Dispos. 2016 Mar; 37(2): 51–65. doi: 10.1002/bdd.1952.

  17. Kingwell K. Drug delivery: New targets for drug delivery across the BBB. Nat Rev Drug Discov. 2016 Feb; 15(2): 84–85. doi: 10.1038/nrd.2016.14.

  18. Cao Y., Balthasar J.P., Jusko W.J. Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn. 2013 Oct; 40(5): 597–607. doi: 10.1007/s10928-013-9332-2.

  19. Lobo E.D., Hansen R.J., Balthasar J.P. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004 Nov; 93(11): 2645–68.

  20. Waldmann T.A., Strober W. Metabolism of immunoglobulins. Prog Allergy. 1969; 13: 1–110.

  21. Mager D.E., Jusko W.J. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001 Dec; 28(6): 507–32.

  22. Wright A., Sato Y., Okada T. et al. In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology. 2000 Dec; 10(12): 1347–55.

  23. Nimmerjahn F., Ravetch J.V. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008 Jan; 8(1): 34–47.

  24. Gibiansky L., Passey C., Roy A. et al. Model-based pharmacokinetic analysis of elotuzumab in patients with relapsed/refractory multiple myeloma. J Pharmacokinet Pharmacodyn. 2016 Jun; 43(3): 243–57. doi: 10.1007/s10928-016-9469-x.

  25. Brambell F.W., Hemmings W.A., Morris I.G. A theoretical model of gamma-globulin catabolism. Nature. 1964 Sep 26; 203: 1352–54.

  26. Kim J., Hayton W.L., Robinson J.M. et al. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol. 2007 Feb; 122(2): 146–55.

  27. Kontermann R.E. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011 Dec; 22(6): 868–76. doi: 10.1016/j.copbio.2011.06.012.

  28. Morell A., Terry W.D., Waldmann T.A. Metabolic properties of IgG subclasses in man. J Clin Invest. 1970 Apr; 49(4): 673–80.

  29. Walsh G., Jefferis R. «Post-translational modifications in the context of therapeutic proteins». Nat Biotechnol. 2006; 24: 1241–52. doi:10.1038/nbt1252.

  30. Zheng Y., Tesar D.B., Benincosa L. et al. Minipig as a potential translatable model for monoclonal antibody pharmacokinetics after intravenous and subcutaneous administration. MAbs. 2012 Mar-Apr; 4(2): 243–55. doi: 10.4161/mabs.4.2.19387.

  31. Kobayashi H., Le N., Kim I.S. et al. The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points. Cancer Res. 1999 Jan 15; 59(2): 422–30.

  32. Junttila T.T., Parsons K., Olsson C. et al. Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer. Cancer Res. 2010 Jun 1; 70(11): 4481–89. doi: 10.1158/0008-5472.CAN-09-3704.

  33. Hotzel I., Theil F.P., Bernstein L.J. et al. A strategy for risk mitigation of antibodies with fast clearance. MAbs. 2012 Nov–Dec; 4(6): 753–60. doi: 10.4161/mabs.22189.

  34. Wang Y., Booth B., Rahman A. et al. Toward greater insights on pharmacokinetics and exposure-response relationships for therapeutic biologics in oncology drug development. Clin Pharmacol Ther. 2017 May; 101(5): 582–84. doi: 10.1002/cpt.628.

  35. Keizer R.J., Huitema A.D., Schellens J.H. et al. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010 Aug; 49(8): 493–507. doi: 10.2165/11531280-000000000-00000.

  36. Glassman P.M., Balthasar J.P. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies. J Pharmacokinet Pharmacodyn. 2016 Aug; 43(4): 427–46. doi: 10.1007/s10928-016-9482-0.


About the Autors


Oleg B. Talibov, PhD, associate professor of the Department of therapy, clinical pharmacology and emergency medical care of A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia. Address: 127473, Moscow, 20/1 Delegatskaya Str. E-mail: oleg.talibov@gmail.com.
ORCID: https://orcid.org/0000-0001-6381-2450.


Similar Articles


Бионика Медиа