Sindecan-1 and cardiovascular diseases


DOI: https://dx.doi.org/10.18565/therapy.2021.8.121-128

Alieva A.M., Pinchuk T.V., Batov M.A., Voronkova K.V., Valiev R.K., Shnakhova L.M., Kalova M.R., Rakhaev A.M., Arakelyan R.A., Nikitin I.G.

1) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow; 2) A.S. Loginov Moscow Clinical Scientific and Practical Center of the Moscow Healthcare Department; 3) I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare (Sechenov University); 4) Main Bureau of Medical and Social Expertise in the Kabardino-Balkarian Republic of the Ministry of Labor and Social Protection of Russia, Nalchik
Abstract. Today, the search and study of new biomarkers that can help the diagnosis of cardiovascular diseases, serve as a tool for assessing the effectiveness of therapy, be a prognostic criterion of clinical outcomes and an indicator in risk stratification remains relevant. In our literature review, we discussed the pathophysiological aspects of sindecan-1 (SDC-1), many of which are not completely clear. There are more and more publications demonstrating the importance of identifying SDC-1 as a new biological marker for the diagnosis and assessment of prognosis in cardiac patients.

Literature



  1. Gondelaud F., Bouakil M., Le Fevre A. et al. Extended disorder at the cell surface: The conformational landscape of the ectodomains of syndecans. Matrix Biol Plus. 2021; 12: 1–19. doi: 10.1016/j.mbplus.2021.100081.

  2. Власов Т.Д., Лазовская О.А., Шиманьски Д.А. соавт. Эндотелиальный гликокаликс: методы исследования и перспективы их применения при оценке дисфункции эндотелия. Регионарное кровообращение и микроциркуляция. 2020; 1: 5–16. [Vlasov T.D., Lazovskaya O.A., Shimanski D.A. et al. Endothelial glycocalyx: research methods and prospects for their application in assessing endothelial dysfunction. Regionarnoye krovoobrashcheniye i mikrotsirkulyatsiya = Regional Blood Circulation and Microcirculation. 2020; 1: 5–16 (In Russ.)]. https://dx.doi.org/10.24884/1682-6655-2020-19-1-5-16.

  3. Kaoru F., Shunichi S., Masanori N. An in situ hybridization study of the Syndecan family in the developing condylar cartilage of fetal mouse mandible. Anat Rec (Hoboken). 2021; 304(3): 559–69. doi: 10.1002/ar.24483.

  4. Алексеев Д.А. Рак желудка: морфологическая характеристика опухоли и сигнальных лимфатических узлов: диссертация на соискание ученной степени кандидата медицинских наук. С.-Петербург. 2017; 146 с. [Alekseev D.A. Stomach cancer: morphological characteristics of the tumor and sentinel lymph nodes: dissertation for the degree of candidate of medical sciences. Saint Petersburg. 2017; 146 pp. (In Russ.)].

  5. Erin M., Esko J.D. Glycosaminoglycans in development, health and disease. Progress in Molecular Biology and Translational Science. 2010; 93: 213–33. doi: 10.1016/S1877-1173(10)93010-X.

  6. Цидулко А.Ю. Протеогликаны как прогностические маркеры глиобластомы и их роль в развитии рецидива заболевания. Диссертация на соискание ученой степени кандидата медицинских наук. Новосибирск. 2021; 116 с. [Tsidulko A.Yu. Proteoglycans as prognostic markers of glioblastoma and their role in the development of disease recurrence. Dissertation for the degree of candidate of medical sciences. Novosibirsk. 2021; 116 pp. (In Russ.)].

  7. Miftode R., Şerban I., Timpau A. et al. Syndecan-1: A review on its role in heart failure and chronic liver disease patients’ assessment. Cardiol Res Pract. 2019; 2019: 4750580. doi: 10.1155/2019/4750580.

  8. Charchanti A., Kanavaros P., Koniaris E. et al. Expression of syndecan-1 in chronic liver diseases: Correlation with hepatic fibrosis. In Vivo. 2021; 35(1): 333–39. doi: 10.21873/invivo.12264.

  9. Parimon T., Yao C., Habiel D. et al. Syndecan-1 promotes lung fibrosis by regulating epithelial reprogramming through extracellular vesicles. JCI Insight. 2019; 5(17): e129359. doi: 10.1172/jci.insight.129359.

  10. Ruperez M., Lorenzo O., Blanco-Colio L. et al. Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation. 2003; 108(12): 1499–505. doi: 10.1161/01.CIR.0000089129.51288.BA.

  11. Chen Y., Lasaitiene D., Friberg P. The renin-angiotensin system in kidney development. Acta Physiol Scand. 2004; 181(4): 529–35. doi: 10.1111/j.1365-201X.2004.01327.x.

  12. Schellings M., Vanhoutte D., Almen G.et al. Syndecan-1 amplifies angiotensin II-induced cardiac fibrosis. Hypertension. 2010; 55(2): 249–56. doi: 10.1161/HYPERTENSIONAHA.109.137885.

  13. Frangogiannis N. Syndecan-1: A critical mediator in cardiac fibrosis. Hypertension. 2010; 55(2): 233–35. doi: 10.1161/HYPERTENSIONAHA.109.147256.

  14. Scheidegger K., Butler S., Witztum J. Angiotensin II increases macrophage-mediated modification of low-density lipoprotein via a lipoxygenase-dependent pathway. J Biol Chem. 1997; 272(34): 21609–15. doi: 10.1074/jbc.272.34.21609.

  15. Kaplan M., Aviram M., Knopf C., Keidar S. Angiotensin II reduces macrophage cholesterol efflux: a role for the AT-1 receptor but not for the ABC1 transporter. Biochem Biophys Res Commun. 2002; 290(5):1529–34. doi: 10.1006/bbrc.2002.6376.

  16. Keidar S., Heinrich R., Kaplan M. et al. Angiotensin II administration to atherosclerotic mice increases macrophage uptake of oxidized ldl: A possible role for interleukin-6. Arterioscler Thromb Vasc Biol. 2001; 21(9): 1464–69. doi: 10.1161/hq0901.095547.

  17. Wang W., Haller C., Wen J.et al. Decoupled syndecan 1 mRNA and protein expression is differentially regulated by angiotensin II in macrophages. J Cell Physiol. 2008; 214(3): 750–56. doi: 10.1002/jcp.21271.

  18. Vo S., Charnaux N., Richard B. Syndecan-1 is overexpressed during atherogenesis. Atherosclerosis. 2015; 241(1): 76.

  19. Angsana J., Chen J., Smith S. et al. Syndecan-1 modulates the motility and resolution responses of macrophages. Arterioscler Thromb Vasc Biol. 2015; 35(2): 332–40. doi: 10.1161/ATVBAHA.114.304720.

  20. Haller C., Smith S., Wen J. et al. Syndecan-1 is protective in atherosclerosis. Circulation. 2009; 120(18): 5193.

  21. Vanhoutte D., Schellings M., Gotte M. et al. Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial infarction. Circulation. 2007; 115(4): 475–82. doi: 10.1161/CIRCULATIONAHA.106.644609.

  22. Ostrowski S., Pedersen S., Jensen J. et al. Acute myocardial infarction is associated with endothelial glycocalyx and cell damage and a parallel increase in circulating catecholamines. Crit Care. 2013; 17(1): R32. doi: 10.1186/cc12532.

  23. Fuernau G., Jung C., Muench P. Syndecan-1 and heparan sulfate in acute myocardial infarction complicated by cardiogenic shock–a biomarker substudy of the IABP-SHOCK II-trial. Circulation. 2018; 130: 18417.

  24. Wernly B., Fuernau G., Masyuk M. et al. Syndecan-1 predicts outcome in patients with st-segment elevation infarction independent from infarct-related myocardial injury. Sci Rep. 2019; 9(1): 18367. doi: 10.1038/s41598-019-54937-x.

  25. Tromp J., Pol A., Klip I. et al. Fibrosis marker syndecan-1 and outcome in patients with heart failure with reduced and preserved ejection fraction. Circ Heart Fail. 2014; 7(3): 457–62. doi: 10.1161/CIRCHEARTFAILURE.113.000846.

  26. Neves F., Meneses G., Sousa N. et al. Syndecan-1 in acute decompensated heart failure--association with renal function and mortality. Circ J. 2015; 79(7): 1511–19. doi: 10.1253/circj.CJ-14-1195.

  27. Liu W., Wang Y., Zheng J. et al. Syndecan-1 as an independent risk factor for the incidence of adverse cardiovascular events in patients having stage C and D heart failure with non-ischemic dilated cardiomyopathy. Clin Chim Acta. 2019; 490: 63–68. doi: 10.1016/j.cca.2018.12.022.

  28. Ajaero C., Procter N., Chirkov Y. et al. Endothelial dysfunction and glycocalyx shedding in heart failure: insights from patients receiving cardiac resynchronisation therapy. Heart Vessels. 2020; 35(2): 197–206. doi: 10.1007/s00380-019-01481-3.

  29. Mitic V., Stojanovic D., Deljanin Ilic M. et al. Cardiac remodeling biomarkers as potential circulating markers of left ventricular hypertrophy in heart failure with preserved ejection fraction. Tohoku J Exp Med. 2020; 250(4): 233–42. doi: 10.1620/tjem.250.233.

  30. Stojanovic D., Mitic V., Stojanovic M. et al. The discriminatory ability of renalase and biomarkers of cardiac remodeling for the prediction of ischemia in chronic heart failure patients with the regard to the ejection fraction. Front Cardiovasc Med. 2021; 8: 691513. doi: 10.3389/fcvm.2021.691513.

  31. Ильина Я.Ю., Фот Е.В., Изотова Н.Н. с соавт. Взаимосвязь эндотелиального гликокаликса с гемодинамикой и метаболизмом у пациентов с септическим шоком и при кардиохирургических операциях с искусственным кровообращением. Вестник анестезиологии и реаниматологии. 2018; 6: 10–19. [Ilyina Ya.Yu., Fot E.V., Izotova N.N. et al. Interrelation of endothelial glycocalyx with hemodynamics and metabolism in patients with septic shock and cardiac surgery with artificial circulation. Vestnik anesteziologii i reanimatologii = Bulletin of Anesthesiology and Reanimatology. 2018; 6: 10–19 (In Russ.)]. https://dx.doi.org/10.21292/2078-5658-2018-15-6-10-19.

  32. Passov A., Schramko A., Salminen U. et al. Endothelial glycocalyx during early reperfusion in patients undergoing cardiac surgery. PLoS One. 2021; 16(5): e0251747. doi: 10.1371/journal.pone.0251747.

  33. Алиева А.М., Байкова И.Е., Кисляков В.А. с соавт. Галектин-3: диагностическая и прогностическая ценность определения у пациентов с хронической сердечной недостаточностью. Терапевтический архив. 2019; 9: 145–149. [Aliyeva A.M., Baykova I.E., Kislyakov V.A. et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskiy arkhiv = Therapeutic Archive. 2019; 9: 145–149 (In Russ.)]. https://dx.doi.org/10.26442/00403660.2019.09.000226.

  34. Алиева А.М., Пинчук Т.В., Алмазова И.И. с соавт. Клиническое значение определения биомаркера крови ST2 у больных с хронической сердечной недостаточностью. Consilium Medicum. 2021; 6: 522–526. [Alieva A.M., Pinchuk T.V., Almazova I.I. et al. Сlinical value of blood biomarker ST2 in patients with chronic heart failure. Consilium Medicum. 2021; 6: 522–526 (In Russ.)]. https://dx.doi.org/10.26442/20751753.2021.6.200606.

  35. Алиева А.М., Резник Е.В., Гасанова Э.Т. с соавт. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью. Архивъ внутренней медицины. 2018; 5: 333–345. [Alieva A.M., Reznik E.V., Hasanova E.T. et al. Clinical significance of the determination of blood biomarkers in patients with chronic heart failure. Arkhiv vnutrenney meditsiny = Archive of Internal Medicine. 2018; 5: 333–345 (In Russ.)]. https://dx.doi.org/10.20514/2226-6704-2018-8-5-333-345.


About the Autors


Amina M. Alieva, PhD, associate professor of the Department of hospital therapy No. 2 of the Faculty of medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 115516, Moscow, 26 Bakinskaya Str. E-mail: amisha_alieva@mail.ru. ORCID: 0000-0001-5416-8579. SPIN-code: 2749-6427
Tatiana V. Pinchuk, PhD, associate professor Department of faculty therapy of the Faculty of pediatrics, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 115280, Moscow, 1/1 Velozavodskaya Str., build 15. E-mail: doktor2000@inbox.ru. ORCID: 0000-0002-7877-4407
Maxim A. Batov, student of the Faculty of medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityaninova Str. ORCID: 0000-0002-3780-4358
Kira V. Voronkova, MD, professor of the Department of neurology of the Faculty of continuing professional education, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, epileptologist at Central Clinical Hospital of RAS, vice president of Association of Epileptologists and Patients, president of Center for the Study of the Problems of the Falling Patient in Medicine. Address: 115280, Moscow, 1/1 Velozavodskaya Str., build 15. E-mail: kiravoronkova@yandex.ru. SPIN-code: 1636-7627. AuthorID: 668237. Hirsch index 9
Ramiz K. Valiev, PhD, head of the Department of oncosurgery No. 2, A.S. Loginov Moscow Clinical Scientific and Practical Center of the Moscow Healthcare Department. Address: 111123, Moscow, 86 Entuziastov Highway. E-mail: Radiosurgery@bk.ru. ORCID: 0000-0003-1613-3716. SPIN-code: 2855-2867
Lydia M. Shnakhova, doctor at I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare (Sechenov University). Address: 119435, Moscow, 4/1 Bol`shaya Pirogovskaya Str. E-mail: shnakhova_l_m@staff.sechenov.ru
Marina R. Kalova, postgraduate student of the Department of hospital therapy No. 2 of the Faculty of medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 115516, Moscow, 26 Bakinskaya Str. E-mail: marina717717@mail.ru. ORCID: 0000-0002-8949-4523
Alik M. Rakhaev, MD, head of expert staff of Main Bureau of Medical and Social Expertise in the Kabardino-Balkarian Republic of the Ministry of Labor and Social Protection of Russia. Адрес: 360003, Nalchik, 131B Tarchokova Str. E-mail: alikrahaev@yandex.ru
Roza A. Arakelyan, student of the Faculty of medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityaninova Str.
Igor G. Nikitin, MD, professor, head of the Department of hospital therapy No. 2 of the Faculty of medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 115516, Moscow, 26 Bakinskaya Str. E-mail: igor.nikitin.64@mail.ru. ORCID: 0000-0003-1699-0881


Similar Articles


Бионика Медиа