Biomarkers in cardiology: microRNA and heart failure


DOI: https://dx.doi.org/10.18565/therapy.2022.1.60-70

Alieva A.M., Teplova N.V., Kislyakov V.A., Voronkova K.V., Shnakhova L.M., Valiev R.K., Rakhaev A.M., Elmurzaeva D.A., Malkarova D.S., Nikitin I.G.

1) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow; 2) I.M. Sechenov First Moscow State Medical University of the of the Ministry of Healthcare of Russia (Sechenovskiy University); 3) A.S. Loginov Moscow Clinical Scientific and Practical Center of the Moscow Department of Healthcare; 4) Kh.M. Berbekov Kabardino-Balkarian State University of the Ministry of Science and Higher Education of Russia, Nalchik
Abstract. MicroRNAs (miRNAs) are small non-coding molecules of ribonucleic acid (RNA). MiRNAs regulate gene expression at the post-transcriptional level by binding to the 3’-untranslated regions of the target miRNA. MiRNAs have been identified as key regulators of complex biological processes associated with multiple cardiovascular pathologies, including left ventricular (LV) hypertrophy, coronary artery disease (CAD), heart failure (HF), hypertension, and arrhythmias. MiRNAs in the bloodstream have been investigated as novel biological markers, especially in the context of acute myocardial infarction (AMI) and HF. In our review, we presented data on the role of miRNA in HF.

Literature



  1. Xue R., Tan W., Wu Y. et al. Role of exosomal miRNAs in Heart Failure. Front Cardiovasc Med. 2020; 7: 592412. doi: 10.3389/fcvm.2020.592412.

  2. Shaker F., Nikravesh A., Arezumand R. et al. Web-based tools for miRNA studies analysis. Comput Biol Med. 2020; 127: 104060. doi: 10.1016/j.compbiomed.2020.104060.

  3. Reinhart B.J., Slack F.J., Basson M. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000; 403(6772): 901–06. doi: 10.1038/35002607.

  4. Mitchell P.S., Parkin R.K., Kroh E.M. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008; 105(30): 10513–18. doi: 10.1073/pnas.0804549105.

  5. Zhou S.S., Jin J.P., Wang J.Q. et al. MiRNAs in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018; 39(7): 1073–84. doi: 10.1038/aps.2018.30.

  6. Nonn L. МикроРНК: от биологии к клиническому применению. Остеопороз и остеопатии. 2016; 1: 7–8. [Nonn L. MicroRNAs: from biology to clinical implementation. Osteoporoz i osteopatii = Osteoporosis and Bone Diseases. 2016; 1: 7–8 (In Russ.)]. https://doi.org/10.14341/osteo201617-8.

  7. Wojciechowska A., Braniewska A., Kozar-Kaminska K. MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med. 2017; 26(5): 865–74. doi: 10.17219/acem/62915.

  8. Луценко А.С., Белая Ж.Е., Пржиялковская Е.Г., Мельниченко Г.А. МикроРНК и их значение в патогенезе СТГ-продуцирующих аденом гипофиза. Вестник Российской академии медицинских наук. 2017; 4: 290–298. [Lutsenko A.S., Belaya Zh.E., Przhiyalkovskaya E.G., Melnichenko G.A. MicroRNAs and their importance in the pathogenesis of STH-producing pituitary adenomas. Vestnik Rossiyskoy akademii meditsinskikh nauk = Bulletin of the Russian Academy of Medical Sciences. 2017; 4: 290–298 (In Russ.)]. https://doi.org/10.15690/vramn856.

  9. Гареев И.Ф., Бейлерли О.А. Циркулирующие микроРНК как биомаркеры: какие перспективы? Профилактическая медицина. 2018; 6: 142–150. [Gareev I.F., Beilerli O.A. Circulating microRNAs as biomarkers: what are the prospects? Profilakticheskaya meditsina = Preventive Medicine. 2018; 6: 142–150 (In Russ.)]. https://doi.org/10.17116/profmed201821061142.

  10. Жанин И.С. Профиль экспрессии микроРНК и генов-мишеней при нарушениях мозгового кровообращения в эксперименте и клинике. Дис. ... канд. мед. наук. Москва. 2020; 116 с. [Zhanin I.S. Expression profile of microRNA and target genes in cerebrovascular accidents in experiment and clinic. Dissertation for the degree of candidate of medical sciences. Moscow. 2020; 116 p. (In Russ.)].

  11. Forero D.A., Gonzalez-Giraldo Y., Castro-Vega L.J., Barreto GE. qPCR-based methods for expression analysis of miRNAs. Biotechniques. 2019; 67(4): 192–99. doi: 10.2144/btn-2019-0065.

  12. Гудкова А.Я., Давыдова В.Г., Бежанишвили Т.Г. с соавт. Содержание циркулирующей микроРНК-21 у пациентов с гипертрофической кардиомиопатией. Терапевтический архив. 2020; 4: 51–56. [Gudkova A.Y., Davydova V.G., Bezhanishvili T.G. et al. The content of circulating miRNA-21 in patients with hypertrophic cardiomyopathy. Terapevticheskiy arkhiv = Therapeutic Archive. 2020; 4: 51–56 (In Russ.)]. https://dx.doi.org/10.26442/00403660.2020.04.000272.

  13. Thum T., Galuppo P., Wolf C. et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. 2007; 116(3): 258–67. doi: 10.1161/CIRCULATIONAHA.107.687947.

  14. Da Costa Martins P.A., Bourajjaj M., Gladka M. et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 2008; 118(15): 1567–76. doi: 10.1161/CIRCULATIONAHA.108.769984.

  15. Romaine S.P., Tomaszewski M., Condorelli G., Samani N.J. MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart. 2015; 101(12): 921–28. doi: 10.1136/heartjnl-2013-305402.

  16. Cakmak H.A., Coskunpinar E., Ikitimur B. et al. The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome-wide expression study. J Cardiovasc Med (Hagerstown). 2015; 16(6): 431–37. doi: 10.2459/JCM.0000000000000233.

  17. Sucharov C., Bristow M.R., Port J.D. MiRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol. 2008; 45(2): 185–92. doi: 10.1016/j.yjmcc.2008.04.014.

  18. Van Rooij E., Sutherland L.B., Liu N. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006; 103(48): 18255–60. doi: 10.1073/pnas.0608791103.

  19. Ovchinnikova E.S., Schmitter D., Vegter E.L. et al. Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail. 2016; 18(4): 414–23. doi: 10.1002/ejhf.332.

  20. Sygitowicz G., Tomaniak M., Błaszczyk O. et al. Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: Preliminary results. Arch Cardiovasc Dis. 2015; 108(12): 634–42. doi: 10.1016/j.acvd.2015.07.003.

  21. Endo K., Naito Y., Ji X. et al. MicroRNA 210 as a biomarker for congestive heart failure. Biol Pharm Bull. 2013; 36(1): 48–54. doi: 10.1248/bpb.b12-00578.

  22. Seronde M.F., Vausort M., Gayat E. et al. Circulating microRNAs and outcome in patients with acute heart failure. PLoS One. 201518; 10(11): e0142237. doi: 10.1371/journal.pone.0142237.

  23. Goren Y., Kushnir M., Zafrir B. et al. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012; 14(2): 147–54. doi: 10.1093/eurjhf/hfr155.

  24. Bayes-Genis A., Lanfear D.E., de Ronde M.W.J. et al. Prognostic value of circulating microRNAs on heart failure-related morbidity and mortality in two large diverse cohorts of general heart failure patients. 2018; 20(1): 67–75. doi: 10.1002/ejhf.984.

  25. Van Boven N., Kardys I., Van Vark L.C. et al. Serially measured circulating microRNAs and adverse clinical outcomes in patients with acute heart failure. Eur J Heart Fail. 2018; 20(1): 89–96. doi: 10.1002/ejhf.950.

  26. Watson C.J., Gupta S.K., O’Connell E. et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail. 2015; 17(4): 405–15. doi: 10.1002/ejhf.244.

  27. Akat K.M., Moore-McGriff D., Morozov P. et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci U S A. 2014; 111(30): 11151–56. doi: 10.1073/pnas.1401724111.

  28. Gidlof O., Smith J.G., Miyazu K. et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord. 2013; 13: 12. doi: 10.1186/1471-2261-13-12.

  29. Marfella R., Di Filippo C., Potenza N. et al. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur J Heart Fail. 2013; 15(11): 1277–88. doi: 10.1093/eurjhf/hft088.

  30. Xiao J., Gao R., Bei Y. et al. Circulating miR-30d predicts survival in patients with acute heart failure. Cell Physiol Biochem. 2017; 41(3): 865–74. doi: 10.1159/000459899.

  31. Melman Y.F., Shah R., Danielson K. et al. Circulating microRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: A translational pilot study. Circulation. 2015; 131(25): 2202–16. doi: 10.1161/CIRCULATIONAHA.114.013220.

  32. Wang T., Cai Z., Hong G. et al. MicroRNA-21 increases cell viability and suppresses cellular apoptosis in non-small cell lung cancer by regulating the PI3K/Akt signaling pathway [retracted in: Mol Med Rep. 2021;23(2): 119]. Mol Med Rep. 2017; 16(5): 6506–11. doi:10.3892/mmr.2017.7440.

  33. Zhang M., Cheng Y.J., Sara J.D. et al. Circulating microRNA-145 is associated with acute myocardial infarction and heart failure. Chin Med J (Engl). 2017; 130(1): 51–56. doi: 10.4103/0366-6999.196573.

  34. Scrutinio D., Conserva F., Passantino A. et al. Circulating microRNA-150-5p as a novel biomarker for advanced heart failure: A genome-wide prospective study. J Heart Lung Transplant. 2017; 36(6): 616–24. doi: 10.1016/j.healun.2017.02.008.

  35. Liu X., Tong Z., Chen K. et al. The Role of miRNA-132 against apoptosis and oxidative stress in heart failure. Biomed Res Int. 2018; 2018: 3452748. doi: 10.1155/2018/3452748.

  36. Masson S., Batkai S., Beermann J. et al. Circulating microRNA-132 levels improve risk prediction for heart failure hospitalization in patients with chronic heart failure. Eur J Heart Fail. 2018; 20(1): 78–85. doi: 10.1002/ejhf.961.

  37. Chen F., Yang J., Li Y., Wang H. Circulating microRNAs as novel biomarkers for heart failure. Hellenic J Cardiol. 2018; 59(4): 209–14. doi: 10.1016/j.hjc.2017.10.002.

  38. Zhang B., Li B., Qin F. et al. Expression of serum microRNA-155 and its clinical importance in patients with heart failure after myocardial infarction. J Int Med Res. 2019; 47(12): 6294–302. doi: 10.1177/0300060519882583.

  39. Zhang L., Xu R.L., Liu S.X. et al. Diagnostic value of circulating microRNA-19b in heart failure. Eur J Clin Invest. 2020; 50(11): e13308. doi: 10.1111/eci.13308.

  40. D’Alessandra Y., Chiesa M., Carena M.C. et al. Differential role of circulating microRNAs to track progression and pre-symptomatic stage of chronic heart failure: A pilot study. Biomedicines. 2020; 8(12): 597. doi: 10.3390/biomedicines8120597.

  41. Liu J., Zhang H., Li X. et al. Diagnostic and prognostic significance of aberrant miR-652-3p levels in patients with acute decompensated heart failure and acute kidney injury. J Int Med Res. 2020; 48(11): 300060520967829. doi: 10.1177/0300060520967829.

  42. Li J., Salvador A.M., Li G. et al. Mir-30d Regulates Cardiac Remodeling by Intracellular and Paracrine Signaling. Circ Res. 2021; 128(1): e1–e23. doi: 10.1161/CIRCRESAHA.120.317244.

  43. Li D.M., Li B.X., Yang LJ. et al. Diagnostic value of circulating microRNA-208a in differentiation of preserved from reduced ejection fraction heart failure. Heart Lung. 2021; 50(1): 71–74. doi: 10.1016/j.hrtlng.2020.07.010.

  44. Spinka G., Bartko P.E., Pavo N. et al. Secondary mitral regurgitation-Insights from microRNA assessment. Eur J Clin Invest. 2021; 51(2): e13381. doi: 10.1111/eci.13381.

  45. Brundin M., Wagsater D., Alehagen U., Carlhall C.J. Circulating microRNA-29-5p can add to the discrimination between dilated cardiomyopathy and ischaemic heart disease. ESC Heart Fail. 2021; 8(5): 3865–74. doi: 10.1002/ehf2.13458.

  46. Nemcekova V., Kmecova Z., Bies Pivackova L. et al. Hematocrit-related alterations of circulating microRNA-21 levels in heart failure patients with reduced ejection fraction: A preliminary study. Genet Test Mol Biomarkers. 2021; 25(4): 302–06. doi: 10.1089/gtmb.2020.0277.

  47. Jin Y., Wei S., Yao L. Diagnostic performance of miR-214, BNP, NT-proBNP and soluble ST2 in acute heart failure. Int J Clin Pract. 2021; 75(10): e14643. doi: 10.1111/ijcp.14643.

  48. Aleshcheva G., Pietsch H., Escher F., Schultheiss H.P. MicroRNA profiling as a novel diagnostic tool for identification of patients with inflammatory and/or virally induced cardiomyopathies. ESC Heart Fail. 2021; 8(1): 408–22. doi: 10.1002/ehf2.13090.

  49. Galluzzo A., Gallo S., Pardini B. et al. Identification of novel circulating microRNAs in advanced heart failure by next-generation sequencing. ESC Heart Fail. 2021; 4: 2907–19. doi: 10.1002/ehf2.13371.

  50. Gevaert A.B., Witvrouwen I., Van Craenenbroeck A.H. et al.; OptimEx-Clin Study Group. MiR-181c level predicts response to exercise training in patients with heart failure and preserved ejection fraction: an analysis of the OptimEx-Clin trial. Eur J Prev Cardiol. 2021: zwab151. doi: 10.1093/eurjpc/zwab151. Epub ahead of print.

  51. 51. Witvrouwen I., Gevaert A.B., Possemiers N. et al. Circulating microRNA as predictors for exercise response in heart failure with reduced ejection fraction. Eur J Prev Cardiol. 2021: zwaa142. doi: 10.1093/eurjpc/zwaa142. Epub ahead of print.

  52. Taubel J., Hauke W., Rump S. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021; 42(2): 178–88. doi: 10.1093/eurheartj/ehaa898.

  53. Алиева А.М., Резник Е.В., Гасанова Э.Т. с соавт. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью. Архивъ внутренней медицины. 2018; 5: 333–345. [Alieva A.M., Reznik E.V., Hasanova E.T. et al. Clinical significance of the determination of blood biomarkers in patients with chronic heart failure. Arkhiv vnutrenney meditsiny = Archive of Internal Medicine. 2018; 5: 333–345 (In Russ.)]. https://dx.doi.org/10.26442/20751753.2020.5.200186.

  54. Алиева А.М., Пинчук Т.В., Алмазова И.И. с соавт. Клиническое значение определения биомаркера крови ST2 у больных с хронической сердечной недостаточностью. Consilium Medicum. 2021; 6: 522–526. [Alieva A.M, Pinchuk T.V., Almazova I.I.et al. Сlinical value of blood biomarker ST2 in patients with chronic heart failure. Consilium Medicum. 2021; 6: 522–526 (In Russ.)]. https://dx.doi.org/10.26442/20751753.2020.5.200186.

  55. Алиева А.М., Алмазова И.И., Пинчук Т.В. с соавт. Фракталкин и сердечно-сосудистые заболевания. Consilium Medicum. 2020; 5: 83–86. [Alieva A.M., Almazova I.I., Pinchuk T.V. et al. Fractalkin and cardiovascular disease. Consilium Medicum. 2020; 5: 83–86 (In Russ.)]. https://dx.doi.org/10.26442/20751753.2020.5.200186.

  56. Jones K.J., Searles C.D. Development of MicroRNA-Based Therapeutics for Vascular Disease. Circ Res. 2020; 127(9): 1179–81. doi: 10.1161/CIRCRESAHA.120.317999.

  57. Shaker F., Nikravesh A., Arezumand R., Aghaee-Bakhtiari S.H. Web-based tools for miRNA studies analysis. Comput Biol Med. 2020; 127:104060. doi: 10.1016/j.compbiomed.2020.104060.


About the Autors


Amina M. Alieva, PhD, associate professor of the Department of hospital therapy No. 2 of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityaninova Str. E-mail: amisha_alieva@mail.ru. ORCID: 0000-0001-5416-8579. SPIN-code: 2749-6427
Natalia V. Teplova, MD, professor, head of the Department of clinical pharmacology of the Faculty of general medicine,
N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityaninova Str. ORCID: https://orcid.org/0000-0002-7181-4680
Vladimir A. Kislyakov, PhD, associate professor of the Department of hospital therapy No. 2 of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityaninova Str. E-mail: kvadoctor@mail.ru
Kira V. Voronkova, MD, professor of the Department of neurology of the Faculty of continuous professional education,
N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia; Central Clinical Hospital of RAS, Association of Epileptologists and Patients; Center for the Study of Falling Problems of the Falling Patient in Medicine. Address: 115280, Moscow, 1/1 Velozavodskaya Str., building 15. E-mail: kiravoronkova@yandex.ru. SPIN-code: 1636-7627. AuthorID: 668237. Индекс Хирша 9
Lidia M. Shnakhova, doctor at I.M. Sechenov First Moscow State Medical University of the of the Ministry of Healthcare of Russia (Sechenovskiy University). Address: 119435, Moscow, 4/1 Bol`shaya Pirogovskaya Str.
E-mail: shnakhova_l_m@staff.sechenov.ru
Ramiz K. Valiev, PhD, head of the Department of oncosurgery No. 2, A.S. Loginov Moscow Clinical Research Center of the Healthcare Department of Moscow. Address: 111123, Moscow, 86 Entuziastov Highway. E-mail: Radiosurgery@bk.ru.
ORCID: 0000-0003-1613-3716. SPIN-code: 2855-2867
Alik M. Rakhaev, MD, professor of the Department of children’s diseases, obstetrics and gynecology of the Faculty of general medicine, Kh.M. Berbekov Kabardino-Balkarian State University of the Ministry of Science and Higher Education of Russia. Address: 360004, Nalchik, 173 Chernyshevskogo Str. Е-mail: alikrahaev@yandex.ru
Dzhannet A. Elmurzaeva, PhD, associate professor of the Department of microbiology, virology and immunology of the Faculty of medicine, Kh.M. Berbekov Kabardino-Balkarian State University of the Ministry of Science and Higher Education of Russia. Address: 360004, Nalchik, 173 Chernyshevskogo Str. E-mail: jannet.elmurzaeva@yandex.ru.
ORCID: 0000-0002-5640-6638. SPIN-code: 7284-3749
Darina S. Malkarova, 6th year student of the Faculty of general medicine, Kh.M. Berbekov Kabardino-Balkarian State University of the Ministry of Science and Higher Education of Russia. Address: 360004, Nalchik, 173 Chernyshevskogo Str.
Igor G. Nikitin, MD, professor, head of the Department of hospital therapy No. 2 of the Faculty of general medicine,
N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityaninova Str. E-mail: igor.nikitin.64@mail.ru. ORCID: 0000-0003-1699-0881


Similar Articles


Бионика Медиа