DOI: https://dx.doi.org/10.18565/therapy.2022.4.62-70
Tufanova O.S., Kasimova A.R., Gordina E.M., Rukina A.N., Bozhkova S.A.
1) R.R. Vreden National Medical Research Centre of Traumatology and Orthopedics of the Ministry of Healthcare of Russia, Saint Petersburg; 2) Academician I.P. Pavlov First Saint Petersburg State Medical University of the Ministry of Healthcare of Russia
1. Masajtis-Zagajewska A., Nowicki M. New markers of urinary tract infection. Clin Chim Acta. 2017; 471: 286–91. https://dx.doi.org/10.1016/j.cca.2017.06.003. 2. Stefaniuk E., Suchocka U., Bosacka K., Hryniewicz W. Etiology and antibiotic susceptibility of bacterial pathogens responsible for community-acquired urinary tract infections in Poland. Eur J Clin Microbiol Infect Dis. 2016; 35(8): 1363–69. https://dx.doi.org/10.1007/s10096-016-2673-1. 3. Foxman B., Barlow R., D’Arcy H. et al. Urinary tract infection: Self-reported incidence and associated costs. Ann Epidemiol. 2000; 10(8): 509–15. https://dx.doi.org/10.1016/s1047-2797(00)00072-7. 4. Палагин И.С., Сухорукова М.В., Дехнич А.В. с соавт.; исследовательская группа «ДАРМИС-2018». Состояние антибиотикорезистентности возбудителей внебольничных инфекций мочевыводящих путей в России, Беларуси и Казахстане: результаты многоцентрового международного исследования «ДАРМИС-2018». Урология. 2020; 1: 19–31. [Palagin I.S., Sukhorukova M.V., Dehnich A.V. et al.; DARMIS-2018 Research Group. Status of antibiotic resistance of non-hospital urinary tract pathogens in Russia, Belarus, and Kazakhstan: Results of the DARMIS-2018 multicenter international study. Urologiya = Urology. 2020; 1: 19–31. (In Russ.)]. https://dx.doi.org/10.18565/urology.2020.1.19-31. 5. Lu C.L., Liu C.Y., Huang Y.T. et al. Antimicrobial susceptibilities of commonly encountered bacterial isolates to fosfomycin determined by agar dilution and disk diffusion methods. Antimicrob Agents Chemother. 2011; 55(9): 4295–301. https://dx.doi.org/10.1128/AAC.00349-11. 6. Kohler C.D., Dobrindt U. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol. 2011; 301(8): 642–47. https://dx.doi.org/10.1016/j.ijmm.2011.09.006. 7. Torres-Puig S., Garcia V., Staerk K. et al. «Omics» technologies - what have they told us about uropathogenic Escherichia coli fitness and virulence during urinary tract infection? Front Cell Infect Microbiol. 2022; 12: 824039. https://dx.doi.org/10.3389/fcimb.2022.824039. 8. Hall A.J. Late infection about a total knee prosthesis. Report of a case secondary to urinary tract infection. J Bone Joint Surg Br. 1974; 56(1): 144–47. 9. D’Ambrosia R.D., Shoji H., Heater R. Secondarily infected total joint replacements by hematogenous spread. J Bone Joint Surg Am. 1976; 58(4): 450–53. 10. Peng L., Zeng Y., Wu Y. et al. Preoperative bacteriuria positivity on urinalysis increases wound complications in primary total hip arthroplasty regardless of the urine culture result. BMC Musculoskelet Disord. 2021; 22(1): 834. https://dx.doi.org/10.1186/s12891-021-04725-4. 11. David T.S., Vrahas M.S. Perioperative lower urinary tract infections and deep sepsis in patients undergoing total joint arthroplasty. J Am Acad Orthop Surg. 2000; 8(1): 66–74. https://dx.doi.org/10.5435/00124635-200001000-00007. 12. Gallegos Salazar J., O’Brien W., Strymish J.M. et al. Association of screening and treatment for preoperative asymptomatic bacteriuria with postoperative outcomes among US veterans. JAMA Surg. 2019; 154(3): 241–48. https://dx.doi.org/10.1001/jamasurg.2018.4759. 13. Аляев Ю.Г., Глыбочко П.В., Пушкарь Д.Ю. Урология. Российские клинические рекомендации. М.: ГЭОТАР-Медиа. 2016; 496 с. [Alyaev Yu.G., Glybochko P.V., Pushkar D.Yu. Urology. Russian clinical guidelines. Moscow: GEOTAR-Media. 2016; 496 pp. (In Russ.)]. ISBN: 978-5-9704-3649-3. 14. Nicolle L.E., Bradley S., Colgan R. et al; Infectious Diseases Society of America; American Society of Nephrology; American Geriatric Society. Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clin Infect Dis. 2005; 40(5): 643–54. https://dx.doi.org/10.1086/427507. Erratum in: Clin Infect Dis. 2005; 40(10): 1556. 15. Котов С.В., Пульбере С.А., Беломытцев С.В. с соавт. Антибиотикорезистентность – новый вызов современной урологии. Экспериментальная и клиническая урология. 2020; 5: 113–119. [Kotov S.V., Pulbere S.A., Belomytcev S.V. et al. Antibiotic resistance – a new challenge for modern urology. Eksperimental’naya i klinicheskaya urologiya = Experimental and Clinical Urology. 2020; 5: 113–119 (In Russ.)]. https://dx.doi.org/10.29188/2222-8543-2020-13-5-113-119. 16. Bush K., Bradford P.A. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev. 2020; 33(2): e00047–19. https://dx.doi.org/10.1128/CMR.00047-19. 17. Pereira J.L., Volcao, L.M., Klafke G.B. et al. Antimicrobial resistance and molecular characterization of extended-spectrum β-lactamases of Escherichia coli and Klebsiella spp. Isolates from urinary tract infections in Southern Brazil. Microb Drug Resist. 2019; 25(2): 173–81. https://dx.doi.org/10.1089/mdr.2018.0046. 18. Sadler S., Holmes M., Ren S. et al. Cost-effectiveness of antibiotic treatment of uncomplicated urinary tract infection in women: a comparison of four antibiotics. BJGP Open. 2017; 1(3): bjgpopen17X101097. https://dx.doi.org/10.3399/bjgpopen17X101097. 19. Perrault L., Dahan S., Iliza A.C. et al. Cost-effectiveness analysis of fosfomycin for treatment of uncomplicated urinary tract infections in Ontario. Can J Infect Dis Med Microbiol. 2017; 2017: 6362804. https://dx.doi.org/10.1155/2017/6362804. 20. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. URL: http://www.eucast.org (date of access – 04.04.2022). 21. Gomez-Ochoa S.A., Espin-Chico B.B., Garcia-Rueda N.A. et al. Risk of surgical site infection in patients with asymptomatic bacteriuria or abnormal urinalysis before joint arthroplasty: Systematic review and meta-analysis. Surg Infect (Larchmt). 2019; 20(3):159–66. https://dx.doi.org/10.1089/sur.2018.201. 22. Garrigues G.E., Zmistowski B., Cooper A.M., Green A.; ICM Shoulder Group. Proceedings from the 2018 International Consensus Meeting on Orthopedic Infections: Evaluation of periprosthetic shoulder infection. J Shoulder Elbow Surg. 2019; 28(6S): S32–S66. https://dx.doi.org/10.1016/j.jse.2019.04.016. 23. Кульчавеня Е.В., Чередниченко А.Г., Шевченко С.Ю. с соавт. Динамика структуры и чувствительности уропатогенов в Новосибирске. Эффективная фармакотерапия. 2015; 18: 10–14. [Kulchavenya Е.V., Cherednichenko A.G., Shevchenko S.Yu. et al. Dynamics of the structure and sensitivity of uropathogens in Novosibirsk. Effektivnaya farmakoterapiya = Effective Pharmacotherapy. 2015; 18: 10–14 (In Russ.)]. 24. Schito G.C., Naber K.G., Botto H. et al. The ARESC study: An international survey on the antimicrobial resistance of pathogens involved in uncomplicated urinary tract infections. Int J Antimicrob Agents. 2009; 34(5): 407–13. https://dx.doi.org/10.1016/j.ijantimicag.2009.04.012. 25. Allerberger F., Klare I. In-vitro activity of fosfomycin against vancomycin-resistant enterococci. J Antimicrob Chemother. 1999; 43(2): 211–17. https://dx.doi.org/10.1093/jac/43.2.211. 26. Perri M.B., Hershberger E., Ionescu M. et al. In vitro susceptibility of vancomycin-resistant enterococci (VRE) to fosfomycin. Diagn Microbiol Infect Dis. 2002; 42(4): 269–71. https://dx.doi.org/10.1016/s0732-8893(02)00370-x. 27. Lopez-Montesinos I., Horcajada J.P. Oral and intravenous fosfomycin in complicated urinary tract infections. Rev Esp Quimioter. 2019; 32 Suppl 1(Suppl 1): 37–44. 28. Bader M.S., Hawboldt J., Brooks A. Management of complicated urinary tract infections in the era of antimicrobial resistance. Postgrad Med. 2010; 122(6): 7–15. https://dx.doi.org/10.3810/pgm.2010.11.2217. 29. Capri S., Del Bono G.P., Dellamano R. Cost-effectiveness comparison of single and multiple-dose antibiotic treatment of lower uncomplicated urinary tract infections. J Chemother. 1992; 4(3): 171–75. https://dx.doi.org/10.1080/1120009x.1992.11739159.
Olga S. Tufanovа, clinical pharmacologist at R.R. Vreden National Medical Research Centre of Traumatology and Orthopedics of the Ministry of Healthcare of Russia. Address: 195427, Saint Petersburg, 8 Akademika Baykova Str. E-mail: katieva@mail.ru. ORCID: https://orcid.org/0000-0003-4891-4963
Alina R. Kasimova, PhD in Medicine, clinical pharmacologist at R.R. Vreden National Medical Research Centre of Traumatology and Orthopedics of the Ministry of Healthcare of Russia, associate professor of the Department of clinical pharmacology and evidence-based medicine, Academician I.P. Pavlov First Saint Petersburg State Medical University of the Ministry of Healthcare of Russia. Address: 195427, Saint Petersburg, 8 Akademika Baykova Str. E-mail: kasi-alina@yandex.ru. ORCID: https://orcid.org/0000-0001-6284-7133
Ekaterina M. Gordina, PhD in Medicine, senior researcher at the Scientific Department of prevention and treatment of wound infection, R.R. Vreden National Medical Research Centre of Traumatology and Orthopedics of the Ministry of Healthcare of Russia. Address: 195427, Saint Petersburg, 8 Akademika Baykova Str. E-mail: emgordina@win.rniito.ru. ORCID: https://orcid.org/0000-0003-2326-7413.
Anna N. Rukina, head of the Central Clinical Diagnostic Laboratory, junior researcher at the Scientific Department for the prevention and treatment of wound infection, R.R. Vreden National Medical Research Centre of Traumatology and Orthopedics of the Ministry of Healthcare of Russia. Address: 195427, Saint Petersburg, 8 Akademika Baykova Str. E-mail: anrukina@win.rniito.ru. ORCID: https://orcid.org/0000-0003-3307-4674
Svetlana A. Bozhkova, Dr. med. habil., associate professor, head of Scientific Department for the prevention and treatment of wound infection, R.R. Vreden National Medical Research Centre of Traumatology and Orthopedics of the Ministry of Healthcare of Russia. Address: 195427, Saint Petersburg, 8 Akademika Baykova Str. E-mail: clinpharm-rniito@yandex.ru. ORCID: https://orcid.org/0000-0002-2083-2424