Neuroinflammation and thromboinflammation in cerebrovascular disease and vascular cognitive impairment


DOI: https://dx.doi.org/10.18565/therapy.2022.9.75-81

Koltsov I.A., Shchukin I.A., Chubykin V.I., Fidler M.S.

1) Federal Center of Brain Research and Neurotechnologies of FMBA of Russia, Moscow; 2) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow
Abstract. Recently, researchers and clinicians have been paying increasing attention to the concept of thromboinflammation, i.e., a dysregulation of thrombosis and inflammation equilibrium, with the transition to a prothrombotic and proinflammatory phenotype. Thromboinflammation plays an important role in the development and progression of cerebrovascular diseases. In acute and chronic ischemic damage to the brain, several pathological processes are activated, leading to the depletion of all neural cell pools and irreversible neural pathway damage, manifesting as focal neurological deficits and cognitive decline. These closely interconnected pathological processes include neuroinflammation, oxidative stress, blood-brain barrier damage with neurovascular unit metabolic decoupling, intrinsic and extrinsic apoptosis. This review covers the interrelation between neuroinflammation and thrombosis within the thromboinflammation concept.

Literature


1. Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013; 13(1): 34–45.https://dx.doi.org/10.1038/nri3345.


2. Stark K., Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 2021; 18(9): 666–82. https://dx.doi.org/10.1038/s41569-021-00552-1


3. Skrobot O.A., Black S.E., Chen C. et al. Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimers Dement J Alzheimers Assoc. 2018; 14(3): 280–92. https://dx.doi.org/10.1016/j.jalz.2017.09.007.


4. Anrather J., Iadecola C. Inflammation and stroke: An overview. Neurother J Am Soc Exp Neurother. 2016; 13(4): 661–70.https://dx.doi.org/10.1007/s13311-016-0483-x.


5. Nalivaeva N.N., Rybnikova E.A. Editorial: Brain hypoxia and ischemia: New insights into neurodegeneration and neuroprotection. Front Neurosci. 2019; 13: 770. https://dx.doi.org/10.3389/fnins.2019.00770.


6. Engelhart M.J., Geerlings M.I., Meijer J. et al. Inflammatory proteins in plasma and the risk of dementia: The Rotterdam study. Arch Neurol. 2004; 61(5): 668–72. https://dx.doi.org/10.1001/archneur.61.5.668.


7. Gervois P., Lambrichts I. The emerging role of triggering receptor expressed on myeloid cells 2 as a target for immunomodulation in ischemic stroke. Front Immunol. 2019; 10: 1668. https://dx.doi.org/10.3389/fimmu.2019.01668.


8. Belarbi K., Cuvelier E., Bonte M.-A. et al. Glycosphingolipids and neuroinflammation in Parkinson’s disease. Mol Neurodegener. 2020; 15(1): 59. https://dx.doi.org/10.1186/s13024-020-00408-1.


9. DiSabato D.J., Quan N., Godbout J.P. Neuroinflammation: The devil is in the details. J Neurochem. 2016; 139 Suppl 2: 136–53.https://dx.doi.org/10.1111/jnc.13607.


10. Lin L., Wang X., Yu Z. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies. Biochem Pharmacol Open Access. 2016; 5(4): 213. https://dx.doi.org/10.4172/2167-0501.1000213.


11. Imtiyaz H.Z., Simon M.C. Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol. 2010; 345: 105–20. https://dx.doi.org/10.1007/82_2010_74.


12. Davies A.L., Desai R.A., Bloomfield P.S. et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann Neurol. 2013; 74(6): 815–25. https://dx.doi.org/10.1002/ana.24006.


13. Khoshnam S.E., Winlow W., Farzaneh M. The interplay of MicroRNAs in the inflammatory mechanisms following ischemic stroke. J Neuropathol Exp Neurol. 2017; 76(7): 548–61. https://dx.doi.org/10.1093/jnen/nlx036.


14. Zhang S.-Z., Wang Q.-Q., Yang Q.-Q. et al. NG2 glia regulate brain innate immunity via TGF-β2/TGFBR2 axis. BMC Med. 2019; 17(1): 204. https://dx.doi.org/10.1186/s12916-019-1439-x.


15. Nishiyama A. Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry. 2007; 13(1): 62–76. https://dx.doi.org/10.1177/1073858406295586.


16. Xu X., Zhang B., Lu K. et al. Prevention of hippocampal neuronal damage and cognitive function deficits in vascular dementia by dextromethorphan. Mol Neurobiol. 2016; 53(5): 3494–502. https://dx.doi.org/10.1007/s12035-016-9786-5.


17. Farkas E., Luiten P.G.M., Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev. 2007; 54(1): 162–80.https://dx.doi.org/10.1016/j.brainresrev.2007.01.003.


18. Garaschuk O., Verkhratsky A. Physiology of microglia. Methods Mol Biol. 2019; 2034: 27–40.https://dx.doi.org/10.1007/978-1-4939-9658-2_3.


19. Hanisch U.-K., Kettenmann H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007; 10(11): 1387–94. https://dx.doi.org/10.1038/nn1997.


20. Fernando M.S., Simpson J.E., Matthews F. et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke. 2006; 37(6): 1391–98. https://dx.doi.org/10.1161/01.STR.0000221308.94473.14.


21. Zhang L.-Y., Pan J., Mamtilahun M. et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics. 2020; 10(1): 74–90. https://dx.doi.org/10.7150/thno.35841.


22. Ma Y., Wang J., Wang Y., Yang G.-Y. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2017; 157: 247–72.https://dx.doi.org/10.1016/j.pneurobio.2016.01.005.


23. Bjerke M., Zetterberg H., Edman A. et al. Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. J Alzheimers Dis JAD. 2011; 27(3): 665–76. https://dx.doi.org/10.3233/JAD-2011-110566.


24. Price B.R., Norris C.M., Sompol P., Wilcock D.M. An emerging role of astrocytes in vascular contributions to cognitive impairment and dementia. J Neurochem. 2018; 144(5): 644–50. https://dx.doi.org/10.1111/jnc.14273.


25. Michaluk P., Kolodziej L., Mioduszewska B. et al. Beta-dystroglycan as a target for MMP-9, in response to enhanced neuronal activity. J Biol Chem. 2007; 282(22): 16036–41. https://dx.doi.org/10.1074/jbc.M700641200.


26. Dean J.M., van de Looij Y., Sizonenko S.V. et al. Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Ann Neurol. 2011; 70(5): 846–56. https://dx.doi.org/10.1002/ana.22480.


27. Fu X., Zhang J., Guo L. et al. Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav. 2014; 126: 122–30. https://dx.doi.org/10.1016/j.pbb.2014.09.005.


28. De Meyer S.F., Denorme F., Langhauser F. et al. Thromboinflammation in stroke brain damage. Stroke. 2016; 47(4): 1165–72.https://dx.doi.org/10.1161/STROKEAHA.115.011238.


29. Rauch A., Wohner N., Christophe O.D. et al. On the versatility of von Willebrand factor. Mediterr J Hematol Infect Dis. 2013; 5(1): e2013046. https://dx.doi.org/10.4084/MJHID.2013.046.


30. Sadler J.E. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998; 67: 395–424.https://dx.doi.org/10.1146/annurev.biochem.67.1.395.


31. Inoue O., Suzuki-Inoue K., Ozaki Y. Redundant mechanism of platelet adhesion to laminin and collagen under flow - Involvement of von Willebrand factor and glycoprotein Ib-IX-V. J Biol Chem. 2008; 283(24): 16279–82. https://dx.doi.org/10.1074/jbc.C700241200.


32. Nieswandt B., Watson S.P. Platelet-collagen interaction: Is GPVI the central receptor? Blood. 2003; 102(2): 449–61.https://dx.doi.org/10.1182/blood-2002-12-3882.


33. Rumbaut R.E., Thiagarajan P. Platelet-vessel wall interactions in hemostasis and thrombosis. Morgan & Claypool Life Sciences. 2010. Accessed October 19, 2016. URL: http://www.ncbi.nlm.nih.gov/books/NBK53450/ (date of access – 01.11.2022).


34. Michaux G., Pullen T.J., Haberichter S.L., Cutler D.F. P-selectin binds to the D’–D3 domains of von Willebrand factor in Weibel–Palade bodies. Blood. 2006; 107(10): 3922–24. https://dx.doi.org/10.1182/blood-2005-09-3635.


35. Rondaij M.G., Bierings R., Kragt A. et al. Dynamics and plasticity of Weibel–Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol. 2006; 26(5): 1002–7. https://dx.doi.org/10.1161/01.ATV.0000209501.56852.6c.


36. Bernardo A., Ball C., Nolasco L. et al. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004; 104(1): 100–6. https://dx.doi.org/10.1182/blood-2004-01-0107.


37. Gragnano F., Sperlongano S., Golia E. et al. The role of von Willebrand factor in vascular inflammation: From pathogenesis to targeted therapy. Mediators Inflamm. 2017; 2017: 5620314. https://dx.doi.org/10.1155/2017/5620314.


38. Pendu R., Terraube V., Christophe O.D. et al. P-selectin glycoprotein ligand 1 and beta 2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood. 2006; 108(12): 3746–52. https://dx.doi.org/10.1182/blood-2006-03-010322.


39. Turner N.A., Moake J. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis. Plos One. 2013; 8(3): e59372.https://dx.doi.org/10.1371/journal.pone.0059372.


40. Schartz N.D., Tenner A.J. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation. 2020; 17(1): 354. https://dx.doi.org/10.1186/s12974-020-02024-8.


41. Loures C.M.G., Duarte R.C.F., Silva M.V.F. et al. Hemostatic abnormalities in dementia: A systematic review and meta-analysis. Semin Thromb Hemost. 2019; 45(5): 514–22. https://dx.doi.org/10.1055/s-0039-1688444.


42. Lv J.-X., Kong Q., Ma X. Current advances in circulating inflammatory biomarkers in atherosclerosis and related cardio-cerebrovascular diseases. Chronic Dis Transl Med. 2017; 3(4): 207–12. https://dx.doi.org/10.1016/j.cdtm.2017.09.002.


43. Gros A., Syvannarath V., Lamrani L. et al. Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex-mediated inflammation in mice. Blood. 2015; 126(8): 1017–26. https://dx.doi.org/10.1182/blood-2014-12-617159.


44. Duerschmied D., Bode C., Ahrens I. Immune functions of platelets. Thromb Haemost. 2014; 112(4): 678–91.https://dx.doi.org/10.1160/TH14-02-0146.


45. Thornton P., McColl B.W., Greenhalgh A. et al. Platelet interleukin-1alpha drives cerebrovascular inflammation. Blood. 2010; 115(17): 3632–39. https://dx.doi.org/10.1182/blood-2009-11-252643.


46. Ishikawa M., Vowinkel T., Stokes K.Y. et al. CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation. 2005; 111(13): 1690–96. https://dx.doi.org/10.1161/01.CIR.0000160349.42665.0C.


47. Stellos K., Katsiki N., Tatsidou P. et al. Association of platelet activation with vascular cognitive impairment: implications in dementia development? Curr Vasc Pharmacol. 2014; 12(1): 152–54. https://dx.doi.org/10.2174/157016111201140327164641.


48. Wu Y. Contact pathway of coagulation and inflammation. Thromb J. 2015; 13: 17. https://dx.doi.org//10.1186/s12959-015-0048-y.


49. Verhoef J.J.F., Barendrecht A.D., Nickel K.F. et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. Blood. 2017; 129(12): 1707–17. https://dx.doi.org/10.1182/blood-2016-08-734988.


50. Austinat M., Braeuninger S., Pesquero J.B. et al. Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke. 2009; 40(1): 285–93. https://dx.doi.org/10.1161/STROKEAHA.108.526673.


51. Langhauser F., Gob E., Kraft P. et al. Kininogen deficiency protects from ischemic neurodegeneration in mice by reducing thrombosis, blood-brain barrier damage, and inflammation. Blood. 2012; 120(19): 4082–92. https://dx.doi.org/10.1182/blood-2012-06-440057.


52. Ashby E.L., Love S., Kehoe P.G. Assessment of activation of the plasma kallikrein-kinin system in frontal and temporal cortex in Alzheimer’s disease and vascular dementia. Neurobiol Aging. 2012; 33(7): 1345–55.https://dx.doi.org/10.1016/j.neurobiolaging.2010.09.024.


53. Sun Y., Langer H.F. Platelets, thromboinflammation and neurovascular disease. Front Immunol. 2022; 13: 843404.https://dx.doi.org/10.3389/fimmu.2022.843404.


54. Darbousset R., Thomas G.M., Mezouar S. et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 2012; 120(10): 2133–43. https://dx.doi.org/10.1182/blood-2012-06-437772.


55. Massberg S., Grahl L., von Bruehl M.-L. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010; 16(8): 887–96. https://dx.doi.org/10.1038/nm.2184.


56. Wang Y., Gao H., Shi C. et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun. 2017; 8: 15559. https://dx.doi.org/10.1038/ncomms15559.


57. Pircher J., Czermak T., Ehrlich A. et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun. 2018; 9(1): 1523. https://dx.doi.org/10.1038/s41467-018-03925-2.


58. Bowman G.L., Dayon L., Kirkland R. et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement J Alzheimers Assoc. 2018; 14(12): 1640–50. https://dx.doi.org/10.1016/j.jalz.2018.06.2857.


About the Autors


Ivan A. Koltsov, PhD in Medicine, senior researcher at the Department of neuroimmunology, Federal Center of Brain Research and Neurotechnologies of FMBA of Russia; senior researcher at Research laboratory of vascular diseases of the brain, assistant at the Department of neurology, neurosurgery and medical genetics of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova Str. E-mail: koltsov_ia@rsmu.ru. ORCID: https://orcid.org/0000-0002-9900-4073
Ivan A. Shchukin, PhD in Medicine, associate professor of the Department of neurology, neurosurgery and medical genetics of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia; senior researcher at the Department of neuroimmunology, Federal Center of Brain Research and Neurotechnologies of FMBA of Russia. Address: 117997, Moscow, 1 Ostrovityanova Str. E-mail: ivashchukin@gmail.com. ORCID: https://orcid.org/0000-0002-6308-9706
Vladimir I. Chubykin, assistant at the Department of neurology, neurosurgery and medical genetics of the Faculty of general medicine, senior researcher at Research laboratory of vascular diseases of the brain, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova Str. E-mail: chub_vova@list.ru
Mikhail S. Fidler, assistant at the Department of neurology, neurosurgery and medical genetics of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova Str. E-mail: rbmi@mail.ru


Similar Articles


Бионика Медиа