Механизмы нейровоспаления и тромбовоспаления при цереброваскулярной патологии и сосудистых когнитивных нарушениях


DOI: https://dx.doi.org/10.18565/therapy.2022.9.75-81

И.А. Кольцов, И.А. Щукин, В.И. Чубыкин, М.С. Фидлер

1) ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России, г. Москва; 2) ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России г. Москва
Аннотация. В последние годы исследователи и клиницисты все большее внимание уделяют изучению концепции тромбовоспаления, т.е. дисрегуляции физиологического баланса тромбоза и воспаления с переходом организма к протромботическому и провоспалительному фенотипу. Особенно важной видится роль тромбовоспаления в развитии и прогрессировании церебровас­кулярных заболеваний. В случаях острого и хронического ишемического повреждения вещества головного мозга запускается ряд патофизиологических процессов, приводящих к гибели всех пулов церебральных клеток и необратимому повреждению проводящих путей, что клинически проявляется не только развитием очаговой неврологической симптоматики, но и когнитивными нарушениями. К таким тесно взаимосвязанным и взаимозависимым процессам относятся нейровоспаление, окислительный стресс, повреждение ГЭБ с разобщением метаболических связей между структурами нейрососудистой единицы, запуск прямого или опосредованного апоптоза. В представленном обзоре рассматриваются взаимосвязи процессов нейровоспаления и тромбоза в рамках концепции тромбовоспаления.

Литература


1. Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013; 13(1): 34–45.https://dx.doi.org/10.1038/nri3345.


2. Stark K., Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 2021; 18(9): 666–82. https://dx.doi.org/10.1038/s41569-021-00552-1


3. Skrobot O.A., Black S.E., Chen C. et al. Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimers Dement J Alzheimers Assoc. 2018; 14(3): 280–92. https://dx.doi.org/10.1016/j.jalz.2017.09.007.


4. Anrather J., Iadecola C. Inflammation and stroke: An overview. Neurother J Am Soc Exp Neurother. 2016; 13(4): 661–70.https://dx.doi.org/10.1007/s13311-016-0483-x.


5. Nalivaeva N.N., Rybnikova E.A. Editorial: Brain hypoxia and ischemia: New insights into neurodegeneration and neuroprotection. Front Neurosci. 2019; 13: 770. https://dx.doi.org/10.3389/fnins.2019.00770.


6. Engelhart M.J., Geerlings M.I., Meijer J. et al. Inflammatory proteins in plasma and the risk of dementia: The Rotterdam study. Arch Neurol. 2004; 61(5): 668–72. https://dx.doi.org/10.1001/archneur.61.5.668.


7. Gervois P., Lambrichts I. The emerging role of triggering receptor expressed on myeloid cells 2 as a target for immunomodulation in ischemic stroke. Front Immunol. 2019; 10: 1668. https://dx.doi.org/10.3389/fimmu.2019.01668.


8. Belarbi K., Cuvelier E., Bonte M.-A. et al. Glycosphingolipids and neuroinflammation in Parkinson’s disease. Mol Neurodegener. 2020; 15(1): 59. https://dx.doi.org/10.1186/s13024-020-00408-1.


9. DiSabato D.J., Quan N., Godbout J.P. Neuroinflammation: The devil is in the details. J Neurochem. 2016; 139 Suppl 2: 136–53.https://dx.doi.org/10.1111/jnc.13607.


10. Lin L., Wang X., Yu Z. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies. Biochem Pharmacol Open Access. 2016; 5(4): 213. https://dx.doi.org/10.4172/2167-0501.1000213.


11. Imtiyaz H.Z., Simon M.C. Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol. 2010; 345: 105–20. https://dx.doi.org/10.1007/82_2010_74.


12. Davies A.L., Desai R.A., Bloomfield P.S. et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann Neurol. 2013; 74(6): 815–25. https://dx.doi.org/10.1002/ana.24006.


13. Khoshnam S.E., Winlow W., Farzaneh M. The interplay of MicroRNAs in the inflammatory mechanisms following ischemic stroke. J Neuropathol Exp Neurol. 2017; 76(7): 548–61. https://dx.doi.org/10.1093/jnen/nlx036.


14. Zhang S.-Z., Wang Q.-Q., Yang Q.-Q. et al. NG2 glia regulate brain innate immunity via TGF-β2/TGFBR2 axis. BMC Med. 2019; 17(1): 204. https://dx.doi.org/10.1186/s12916-019-1439-x.


15. Nishiyama A. Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry. 2007; 13(1): 62–76. https://dx.doi.org/10.1177/1073858406295586.


16. Xu X., Zhang B., Lu K. et al. Prevention of hippocampal neuronal damage and cognitive function deficits in vascular dementia by dextromethorphan. Mol Neurobiol. 2016; 53(5): 3494–502. https://dx.doi.org/10.1007/s12035-016-9786-5.


17. Farkas E., Luiten P.G.M., Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev. 2007; 54(1): 162–80.https://dx.doi.org/10.1016/j.brainresrev.2007.01.003.


18. Garaschuk O., Verkhratsky A. Physiology of microglia. Methods Mol Biol. 2019; 2034: 27–40.https://dx.doi.org/10.1007/978-1-4939-9658-2_3.


19. Hanisch U.-K., Kettenmann H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007; 10(11): 1387–94. https://dx.doi.org/10.1038/nn1997.


20. Fernando M.S., Simpson J.E., Matthews F. et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke. 2006; 37(6): 1391–98. https://dx.doi.org/10.1161/01.STR.0000221308.94473.14.


21. Zhang L.-Y., Pan J., Mamtilahun M. et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics. 2020; 10(1): 74–90. https://dx.doi.org/10.7150/thno.35841.


22. Ma Y., Wang J., Wang Y., Yang G.-Y. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2017; 157: 247–72.https://dx.doi.org/10.1016/j.pneurobio.2016.01.005.


23. Bjerke M., Zetterberg H., Edman A. et al. Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. J Alzheimers Dis JAD. 2011; 27(3): 665–76. https://dx.doi.org/10.3233/JAD-2011-110566.


24. Price B.R., Norris C.M., Sompol P., Wilcock D.M. An emerging role of astrocytes in vascular contributions to cognitive impairment and dementia. J Neurochem. 2018; 144(5): 644–50. https://dx.doi.org/10.1111/jnc.14273.


25. Michaluk P., Kolodziej L., Mioduszewska B. et al. Beta-dystroglycan as a target for MMP-9, in response to enhanced neuronal activity. J Biol Chem. 2007; 282(22): 16036–41. https://dx.doi.org/10.1074/jbc.M700641200.


26. Dean J.M., van de Looij Y., Sizonenko S.V. et al. Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Ann Neurol. 2011; 70(5): 846–56. https://dx.doi.org/10.1002/ana.22480.


27. Fu X., Zhang J., Guo L. et al. Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav. 2014; 126: 122–30. https://dx.doi.org/10.1016/j.pbb.2014.09.005.


28. De Meyer S.F., Denorme F., Langhauser F. et al. Thromboinflammation in stroke brain damage. Stroke. 2016; 47(4): 1165–72.https://dx.doi.org/10.1161/STROKEAHA.115.011238.


29. Rauch A., Wohner N., Christophe O.D. et al. On the versatility of von Willebrand factor. Mediterr J Hematol Infect Dis. 2013; 5(1): e2013046. https://dx.doi.org/10.4084/MJHID.2013.046.


30. Sadler J.E. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998; 67: 395–424.https://dx.doi.org/10.1146/annurev.biochem.67.1.395.


31. Inoue O., Suzuki-Inoue K., Ozaki Y. Redundant mechanism of platelet adhesion to laminin and collagen under flow - Involvement of von Willebrand factor and glycoprotein Ib-IX-V. J Biol Chem. 2008; 283(24): 16279–82. https://dx.doi.org/10.1074/jbc.C700241200.


32. Nieswandt B., Watson S.P. Platelet-collagen interaction: Is GPVI the central receptor? Blood. 2003; 102(2): 449–61.https://dx.doi.org/10.1182/blood-2002-12-3882.


33. Rumbaut R.E., Thiagarajan P. Platelet-vessel wall interactions in hemostasis and thrombosis. Morgan & Claypool Life Sciences. 2010. Accessed October 19, 2016. URL: http://www.ncbi.nlm.nih.gov/books/NBK53450/ (date of access – 01.11.2022).


34. Michaux G., Pullen T.J., Haberichter S.L., Cutler D.F. P-selectin binds to the D’–D3 domains of von Willebrand factor in Weibel–Palade bodies. Blood. 2006; 107(10): 3922–24. https://dx.doi.org/10.1182/blood-2005-09-3635.


35. Rondaij M.G., Bierings R., Kragt A. et al. Dynamics and plasticity of Weibel–Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol. 2006; 26(5): 1002–7. https://dx.doi.org/10.1161/01.ATV.0000209501.56852.6c.


36. Bernardo A., Ball C., Nolasco L. et al. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004; 104(1): 100–6. https://dx.doi.org/10.1182/blood-2004-01-0107.


37. Gragnano F., Sperlongano S., Golia E. et al. The role of von Willebrand factor in vascular inflammation: From pathogenesis to targeted therapy. Mediators Inflamm. 2017; 2017: 5620314. https://dx.doi.org/10.1155/2017/5620314.


38. Pendu R., Terraube V., Christophe O.D. et al. P-selectin glycoprotein ligand 1 and beta 2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood. 2006; 108(12): 3746–52. https://dx.doi.org/10.1182/blood-2006-03-010322.


39. Turner N.A., Moake J. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis. Plos One. 2013; 8(3): e59372.https://dx.doi.org/10.1371/journal.pone.0059372.


40. Schartz N.D., Tenner A.J. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation. 2020; 17(1): 354. https://dx.doi.org/10.1186/s12974-020-02024-8.


41. Loures C.M.G., Duarte R.C.F., Silva M.V.F. et al. Hemostatic abnormalities in dementia: A systematic review and meta-analysis. Semin Thromb Hemost. 2019; 45(5): 514–22. https://dx.doi.org/10.1055/s-0039-1688444.


42. Lv J.-X., Kong Q., Ma X. Current advances in circulating inflammatory biomarkers in atherosclerosis and related cardio-cerebrovascular diseases. Chronic Dis Transl Med. 2017; 3(4): 207–12. https://dx.doi.org/10.1016/j.cdtm.2017.09.002.


43. Gros A., Syvannarath V., Lamrani L. et al. Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex-mediated inflammation in mice. Blood. 2015; 126(8): 1017–26. https://dx.doi.org/10.1182/blood-2014-12-617159.


44. Duerschmied D., Bode C., Ahrens I. Immune functions of platelets. Thromb Haemost. 2014; 112(4): 678–91.https://dx.doi.org/10.1160/TH14-02-0146.


45. Thornton P., McColl B.W., Greenhalgh A. et al. Platelet interleukin-1alpha drives cerebrovascular inflammation. Blood. 2010; 115(17): 3632–39. https://dx.doi.org/10.1182/blood-2009-11-252643.


46. Ishikawa M., Vowinkel T., Stokes K.Y. et al. CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation. 2005; 111(13): 1690–96. https://dx.doi.org/10.1161/01.CIR.0000160349.42665.0C.


47. Stellos K., Katsiki N., Tatsidou P. et al. Association of platelet activation with vascular cognitive impairment: implications in dementia development? Curr Vasc Pharmacol. 2014; 12(1): 152–54. https://dx.doi.org/10.2174/157016111201140327164641.


48. Wu Y. Contact pathway of coagulation and inflammation. Thromb J. 2015; 13: 17. https://dx.doi.org//10.1186/s12959-015-0048-y.


49. Verhoef J.J.F., Barendrecht A.D., Nickel K.F. et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. Blood. 2017; 129(12): 1707–17. https://dx.doi.org/10.1182/blood-2016-08-734988.


50. Austinat M., Braeuninger S., Pesquero J.B. et al. Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke. 2009; 40(1): 285–93. https://dx.doi.org/10.1161/STROKEAHA.108.526673.


51. Langhauser F., Gob E., Kraft P. et al. Kininogen deficiency protects from ischemic neurodegeneration in mice by reducing thrombosis, blood-brain barrier damage, and inflammation. Blood. 2012; 120(19): 4082–92. https://dx.doi.org/10.1182/blood-2012-06-440057.


52. Ashby E.L., Love S., Kehoe P.G. Assessment of activation of the plasma kallikrein-kinin system in frontal and temporal cortex in Alzheimer’s disease and vascular dementia. Neurobiol Aging. 2012; 33(7): 1345–55.https://dx.doi.org/10.1016/j.neurobiolaging.2010.09.024.


53. Sun Y., Langer H.F. Platelets, thromboinflammation and neurovascular disease. Front Immunol. 2022; 13: 843404.https://dx.doi.org/10.3389/fimmu.2022.843404.


54. Darbousset R., Thomas G.M., Mezouar S. et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 2012; 120(10): 2133–43. https://dx.doi.org/10.1182/blood-2012-06-437772.


55. Massberg S., Grahl L., von Bruehl M.-L. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010; 16(8): 887–96. https://dx.doi.org/10.1038/nm.2184.


56. Wang Y., Gao H., Shi C. et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun. 2017; 8: 15559. https://dx.doi.org/10.1038/ncomms15559.


57. Pircher J., Czermak T., Ehrlich A. et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun. 2018; 9(1): 1523. https://dx.doi.org/10.1038/s41467-018-03925-2.


58. Bowman G.L., Dayon L., Kirkland R. et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement J Alzheimers Assoc. 2018; 14(12): 1640–50. https://dx.doi.org/10.1016/j.jalz.2018.06.2857.


Об авторах / Для корреспонденции


Иван Алексеевич Кольцов, к.м.н., старший научный сотрудник отдела нейроиммунологии ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России, старший научный сотрудник научно-исследовательской лаборатории сосудистых заболеваний головного мозга, ассистент кафедры неврологии, нейрохирургии и медицинской генетики лечебного факультета ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России. Адрес: 117997, г. Москва, ул. Островитянова, д. 1. E-mail: koltsov_ia@rsmu.ru. ORCID: https://orcid.org/0000-0002-9900-4073
Иван Александрович Щукин, к.м.н., доцент кафедры неврологии, нейрохирургии и медицинской генетики лечебного факультета ФГАОУ ВО «Российский национальный исследовательский медицинский университет
им. Н.И. Пирогова» Минздрава России, старший научный сотрудник отдела нейроиммунологии ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России. Адрес: 117997, г. Москва, ул. Островитянова, д. 1. E-mail: ivashchukin@gmail.com. ORCID: https://orcid.org/0000-0002-6308-9706
Владимир Иванович Чубыкин, ассистент кафедры неврологии, нейрохирургии и медицинской генетики лечебного факультета, старший научный сотрудник научно-исследовательской лаборатории сосудистых заболеваний головного мозга ФГАОУ ВО «Российский национальный исследовательский медицинский университет
им. Н.И. Пирогова» Минздрава России. Адрес: 117997, г. Москва, ул. Островитянова, д. 1. E-mail: chub_vova@list.ru
Михаил Сергеевич Фидлер, ассистент кафедры неврологии, нейрохирургии и медицинской генетики лечебного факультета ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России. Адрес: 117997, г. Москва, ул. Островитянова, д. 1. E-mail: rbmi@mail.ru


Похожие статьи


Бионика Медиа