Use of dapagliflozin in a comorbid patient: new opportunities


DOI: https://dx.doi.org/10.18565/therapy.2023.3.97-104

Panevin T.S., Eliseev M.S., Bobkova A.O., Dimitreva A.E., Urumova M.M.

V.A. Nasonova Scientific Research Institute of Rheumatology, Moscow
Abstract. One of the special features of the modern world is the increase in prevalence of metabolic syndrome and cardiovascular diseases. Treatment of them is associated with the need of multicomponent therapy prescription, which complicates medicamentous interactions’ control and leads to compliance and polypharmacy decrease. A large number of drugs taken by a patient dictates the need to search for drugs that contribute to the control of several diseases at the same time and can be successfully used in patients with reduced kidney function, in the presence of cardiovascular diseases. Current article represents a clinical case demonstrating an example of the use of sodium-glucose cotransporter type 2 inhibitor dapagliflozin in a comorbid patient with type 2 diabetes mellitus, chronic kidney disease, chronic heart failure and gout.

Literature


1. Государственный реестр лекарственных средств Минздрава России. Инструкция по медицинскому применению лекарственного препарата Форсига (таблетки, покрытые пленочной оболочкой, 5 мг, 10 мг). РУ: ЛП-002596 от 21.08.2014 (переоформлено 01.10.2021). Доступ: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=7c01f9a2-8dce-4827-91fb-b63e67e98f9f (дата обращения – 01.04.2023). [State Register of Medicines of the Ministry of Healthcare of Russia. Instructions for medical use of the drug Forsiga (film-coated tablets, 5 mg, 10 mg). Registration certificate: LP-002596 dated 08/21/2014 (reissued on 10/01/2021). URL: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=7c01f9a2-8dce-4827-91fb-b63e67e98f9f (date of access – 01.04.2023) (In Russ.)].


2. Паневин Т.С., Елисеев М.С., Шестакова М.В., Насонов Е.Л. Преимущества терапии ингибиторами натрий-глюкозного котранспортера 2 типа у пациентов с сахарным диабетом 2 типа в сочетании с гиперурикемией и подагрой. Терапевтический архив. 2020; 92(5): 110–118. [Panevin T.S., Eliseev M.S., Shestakova M.V., Nasonov E.L. Advantages of therapy with sodium glucose cotransporter type 2 inhibitors in patients with type 2 diabetes mellitus in combination with hyperuricemia and gout. Terapevticheskiy arkhiv = Therapeutic Archive. 2020; 92(5): 110–118 (In Russ.)]. https://dx.doi.org/10.26442/00403660.2020.05.000633. EDN: ZOAIPJ.


3. Chung M.C., Hung P.H., Hsiao P.J. et al. Association of sodium-glucose transport protein 2 inhibitor use for type 2 diabetes and incidence of gout in Taiwan. JAMA Netw Open. 2021; 4(11): e2135353. https://dx.doi.org/10.1001/jamanetworkopen.2021.35353.


4. Барскова В.Г., Елисеев М.С., Денисов И.С. с соавт. Частота метаболического синдрома и сопутствующих заболеваний у больных подагрой. Данные многоцентрового исследования. Научно-практическая ревматология. 2012; 50(6): 15–18. [Barskova V.G., Eliseev M.S., Denisov I.S. et al. The frequency of metabolic syndrome and concomitant diseases in patients with gout. Data from a multicenter study. Nauchno-prakticheskaya revmatologiya = Scientific and Practical Rheumatology. 2012; 50(6): 15–18 (In Russ.)]. EDN: PMSVLR.


5. Krishnan E., Svendsen K., Neaton J.D. et al. Long-term cardiovascular mortality among middle-aged men with gout. Arch Intern Med. 2008; 168(10): 1104–10. https://dx.doi.org/10.1001/archinte.168.10.1104.


6. Vazquez-Mellado J., Alvarez Hernandez E., Burgos-Vargas R. Primary prevention in rheumatology: the importance of hyperuricemia. Best Pract Res Clin Rheumatol. 2004;18(2): 111–24. https://dx.doi.org/10.1016/j.berh.2004.01.001.


7. Hernandez-Cuevas C.B., Roque L.H., Huerta-Sil G. et al. First acute gout attacks commonly precede features of the metabolic syndrome. J Clin Rheumatol. 2009; 15(2): 65–67. https://dx.doi.org/10.1097/RHU.0b013e31819c0dba.


8. Zuo T., Liu X., Jiang L. et al. Hyperuricemia and coronary heart disease mortality: A meta-analysis of prospective cohort studies. BMC Cardiovasc Disord. 2016; 16(1): 207. https://dx.doi.org/10.1186/s12872-016-0379-z71.


9. Scheen A.J., Van Gaal L.F. Combating the dual burden: therapeutic targeting of common pathways in obesity and type 2 diabetes. Lancet Diabetes Endocrinol. 2014; 2(11): 911–22. https://dx.doi.org/10.1016/s2213-8587(14)70004-x.


10. Barnett A.H. Impact of sodium glucose cotransporter 2 inhibitors on weight in patients with type 2 diabetes mellitus. Postgrad Med. 2013; 125(5): 92–100. https://dx.doi.org/10.3810/pgm.2013.09.2698.


11. Ferrannini G., Hach T., Crowe S. et al. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015; 38(9): 1730–35. https://dx.doi.org/10.2337/dc15-0355.


12. Baker W.L., Smyth L.R., Riche D.M. et al. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: A systematic review and meta-analysis. J Am Soc Hypertens. 2014; 8(4): 262–75.e9. https://dx.doi.org/10.1016/j.jash.2014.01.007.


13. Sano M., Chen S., Imazeki H. et al. Changes in heart rate in patients with type 2 diabetes mellitus after treatment with luseogliflozin: Subanalysis of placebo-controlled, double-blind clinical trials. J Diabetes Investig. 2018; 9(3): 638–41. https://dx.doi.org/10.1111/jdi.12726.


14. Meier C., Schwartz A.V., Egger A., Lecka-Czernik B. Effects of diabetes drugs on the skeleton. Bone. 2016; 82: 93–100. https://dx.doi.org/10.1016/j.bone.2015.04.026.


15. Lin K.M., Lu C.L., Hung K.C. et al. The paradoxical role of uric acid in osteoporosis. Nutrients. 2019; 11(9): 2111. https://dx.doi.org/10.3390/nu11092111.


16. Ljunggren O., Bolinder J., Johansson L. et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab. 2012; 14(11): 990–99. https://dx.doi.org/10.1111/j.1463-1326.2012.01630.x.


17. Bolinder J., Ljunggren O., Johansson L. et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. 2013; 16(2):159–69. https://dx.doi.org/10.1111/dom.12189.


18. Vasilakou D., Karagiannis T., Athanasiadou E. et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes. Ann Intern Med. 2013; 159(4): 262. https://dx.doi.org/10.7326/0003-4819-159-4-201308200-00007.


19. Berhan A., Barker A. Sodium glucose co-transport 2 inhibitors in the treatment of type 2 diabetes mellitus: A meta-analysis of randomized double-blind controlled trials. BMC Endocr Disord. 2013; 13: 58. https://dx.doi.org/10.1186/1472-6823-13-58.


20. Дедов И.И., Шестакова М.В., Майоров А.Ю. с соавт. «Алгоритмы специализированной медицинской помощи больным сахарным диабетом» Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова 9-й выпуск. Сахарный диабет. 2019; 22(S1–1): 1–144. Dedov I.I., Shestakova M.V., Mayorov A.Yu. et al. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 9th edition. Sakharnyy diabet = Diabetes Mellitus. 2019; 22(S1–1): 1–144 (In Russ.)]. https://dx.doi.org/10.14341/DM221S1. EDN: LDOTJF.


21. Терещенко С.Н., Шестакова М.В., Агеев Ф.Т. с соавт. Целесообразность назначения дапаглифлозина для профилактики неблагоприятных исходов хронической сердечной недостаточности у пациентов со сниженной фракцией выброса. Резолюция совета экспертов. Российский кардиологический журнал. 2020; 25(5): 114–120. [Tereshchenko S.N., Shestakova M.V., Ageev F.T. et al. Rationale for dapagliflozin administration for the prevention of adverse outcomes in patients with heart failure with reduced ejection fraction. Expert consensus statement. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2020; 25(5): 114–120 (In Russ.)]. https://dx.doi.org/10.15829/1560-4071-2020-3919. EDN: OFERRQ.


22. Orso F., Fabbri G., Maggioni A.P. Epidemiology of heart failure. Handb Exp Pharmacol. 2017; 243: 15–33. https://dx.doi.org/10.1007/164_2016_74.


23. Tamariz L., Harzand A., Palacio A. et al. Uric acid as a predictor of all-cause mortality in heart failure: A meta-analysis. Congest Heart Fail. 2011; 17(1): 25–30. https://dx.doi.org/10.1111/j.1751-7133.2011.00200.x.


24. Packer M. SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: A paradigm shift in understanding their mechanism of action. Diabetes Care. 2020; 43(3): 508–11. https://dx.doi.org/10.2337/dci19-0074.


25. McMurray J.J.V., Solomon S.D., Inzucchi S.E. et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381(21): 1995–2008. https://dx.doi.org/10.1056/NEJMoa1911303.


26. Kosiborod M.N., Jhund P.S., Docherty K.F. et al. Effects of dapagliflozin on symptoms, function, and quality of life in patients with heart failure and reduced ejection fraction: Results from the DAPА-HF trial. Circulation. 2020; 141(2): 90–99. https://dx.doi.org/10.1161/CIRCULATIONAHA.119.044138.


27. Verma S., Mazer C.D., Yan A.T. et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: The EMPA-HEART CardioLink-6 randomized clinical trial. Circulation. 2019; 140(21): 1693–702. https://dx.doi.org/10.1161/CIRCULATIONAHA.119.042375.


28. Chilton R., Tikkanen I., Cannon C.P. et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015; 17(12): 1180–93. https://dx.doi.org/10.1111/dom.12572.


29. Mosenzon O., Wiviott S.D., Cahn A. et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial [published correction appears in Lancet Diabetes Endocrinol. 2019; 7(8): e20]. Lancet Diabetes Endocrinol. 2019; 7(8): 60–67. https://dx.doi.org/10.1016/S2213-8587(19)30180-9.


30. Wheeler D.C., Stefansson B.V., Jongs N. et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: A prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021; 9(1): 22–31. https://dx.doi.org/10.1016/S2213-8587(20)30369-7.


31. Karalliedde J. Кардио- и нефропротективные эффекты глифлозинов помимо снижения уровня гликемии. Российский кардиологический журнал. 2021; 26(3): 84–90. [Karalliedde J. The role of SGLT2 inhibitors beyond glucose-lowering to cardio-renal protection. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2021; 26(3): 84–90 (In Russ.)]. https://dx.doi.org/10.15829/1560-4071-2021-4323. EDN: PYAZWV.


32. Чикина М.Н., Елисеев М.С., Желябина О.В. Практическое применение национальных клинических рекомендаций по лечению подагры (предварительные данные). Современная ревматология. 2020; 14(2): 97–103. [Chikina M.N., Eliseev M.S., Zhelyabina O.V. Practical application of national clinical guidelines for the management of gout (preliminary data). Sovremennaya revmatologiya = Modern Rheumatology Journal. 2020; 14(2): 97–103 (In Russ.)]. https://dx.doi.org/10.14412/1996-7012-2020-2-97-103. EDN: JENNNH.


33. McGill J.B. The SGLT2 inhibitor empagliflozin for the treatment of type 2 diabetes mellitus: A bench to bedside review. Diabetes Ther. 2014; 5(1): 43–63. https://dx.doi.org/10.1007/s13300-014-0063-1.


34. Doblado M., Moley K.H. Facilitative glucose transporter 9, a unique hexose and urate transporter. Am J Physiol Endocrinol Metab. 2009; 297(4): E831–E835. https://dx.doi.org/10.1152/ajpendo.00296.2009.


35. Caulfield M.J., Munroe P.B., O’Neill D. et al. SLC2A9 Is a high-capacity urate transporter in humans. PLoS Medicine. 2008; 5(10): e197. https://dx.doi.org/10.1371/journal.pmed.0050197.


36. List J.F., Woo V., Morales E. et al. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2008; 32(4): 650–57. https://dx.doi.org/10.2337/dc08-1863.


37. Roden M., Merker L., Christiansen A.V. et al. Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naïve patients with type 2 diabetes: A double-blind extension of a Phase III randomized controlled trial. Cardiovasc Diabetol. 2015; 14: 154. https://dx.doi.org/10.1186/s12933-015-0314-0.


38. Davies M.J., Trujillo A., Vijapurkar U. et al. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2015; 17(4): 426–29. https://dx.doi.org/10.1111/dom.12439.


39. Zhao Y., Xu L., Tian D. et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2017; 20(2): 458–62. https://dx.doi.org/10.1111/dom.13101.


40. Xin Y., Guo Y., Li Y. et al. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: A systematic review with an indirect comparison meta-analysis. Saudi J Biol Sci. 2019; 26(2): 421–26. https://dx.doi.org/10.1016/j.sjbs.2018.11.013.


About the Autors


Taras S. Panevin, PhD in Medical Sciences, researcher at the Department of inflammatory diseases of joints, endocrinologist at V.A. Nasonova Scientific Research Institute of Rheumatology. Address: 115522, Moscow, 34A Kashirskoe Highway. E-mail: tarasel@list.ru. ORCID: https://orcid.org/0000-0002-5290-156X
Maxim S. Eliseev, PhD in Medical Sciences, head of the Laboratory of crystal-induced arthritis, senior researcher, rheumatologist at V.A. Nasonova Scientific Research Institute of Rheumatology. Address: 115522, Moscow, 34A Kashirskoe Highway. E-mail: elicmax@yandex.ru. ORCID: https://orcid.org/0000-0002-5290-156X
Anastasia O. Bobkova, resident physician at V.A. Nasonova Scientific Research Institute of Rheumatology. Address: 115522, Moscow, 34A Kashirskoe Highway. E-mail: nasta07041@gmail.com.
ORCID: https://orcid.org/0000-0002-9958-8988
Anastasia E. Dimitreva, rheumatologist at the 2nd Department of rheumatology of V.A. Nasonova Scientific Research Institute of Rheumatology. Address: 115522, Moscow, 34A Kashirskoe Highway. E-mail: dimitreva88@mail.ru. ORCID: https://orcid.org/0000-0001-7353-4087
Margarita M. Urumova, PhD in Medical Sciences, head of the 2nd Department of V.A. Nasonova Scientific Research Institute of Rheumatology. Address: 115522, Moscow, 34A Kashirskoe Highway. E-mail: tarasel@list.ru.
ORCID: https://orcid.org/0000-0002-9755-5760


Similar Articles


Бионика Медиа