Lipid-lowering therapy today and tomorrow


DOI: https://dx.doi.org/10.18565/therapy.2023.4.77-87

Boeva O.I., Kokorin V.A., Latiy V.V.

1) Central State Medical Academy of the executive office of the President of the Russian Federation, Moscow; 2) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, Moscow; 3) Polyclinic №1 of the executive office of the President of the Russian Federation, Moscow
Abstract. Reducing the relative risk of cardiovascular events is proportional to the absolute reduction of low-density lipoprotein cholesterol (LDL cholesterol), which is the main goal of therapy, regardless of the method of reduction. During the past decades, therapeutic algorithms of hypercholesterolemia correction have been improved, providing clinical benefits in terms of cardiovascular outcomes. Current review is dedicated to currently available lipid-lowering drugs: statins, ezetimibe, PCSK9 inhibitors (monoclonal antibodies, small interfering RNA preparation) and bempedoic acid. Recent changes in lipid-lowering regimens are also discussed, including the early use of lipid-lowering drug combinations to achieve relatively low LDL-C targets in patients at high/very high CV risk.

Literature


1. World Health Organization. Global status report on noncommunicable diseases. Geneva: World Health Organization. 2010. URL: http://www.who.int/nmh/publications/ncd_report2010/en/ (date of access – 01.05.2023).


2. Ridker P.M. LDL cholesterol: Controversies and future therapeutic directions. Lancet. 2014; 384(9943): 607–17.https://dx.doi.org/10.1016/S0140-6736(14)61009-6.


3. Sabatine M.S., Wiviott S.D., Im K. et al. Efficacy and safety of further lowering of low-density lipoprotein cholesterol in patients starting with very low levels: A meta-analysis. JAMA Cardiol. 2018; 3(9): 823–28. https://dx.doi.org/10.1001/jamacardio.2018.2258.


4. Mach F., Baigent C., Catapano A.L. et al.; ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur Heart J. 2020; 41(1): 111–88.https://dx.doi.org/10.1093/eurheartj/ehz455.


5. Visseren F.L.J., Mach F., Smulderst Y.M. с соавт. 2021 Рекомендации ESC по профилактике сердечно-сосудистых заболеваний в клинической практике. Российский кардиологический журнал. 2022; 27(7): 191–288. [Visseren F.L.J., Mach F., Smulderst Y.M. et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2022; 27(7): 191–288. (In Russ.)]. https://dx.doi.org/10.15829/1560-4071-2022-5155. EDN: VQDNIK.


6. Нарушения липидного обмена. Клинические рекомендации Министерства здравоохранения РФ. 2023. [Lipid metabolism disorders. Clinical recommendations of the Ministry of Healthcare of the Russian Federation. 2023 (In Russ.)]


7. Kosmas C.E., Pantou D., Sourlas A. et al. New and emerging lipid-modifying drugs to lower LDL cholesterol. Drugs Context. 2021; 10: 2021–8–3. https://dx.doi.org/10.7573/dic.2021-8-3.


8. Ballantyne C.M., Andrews T.C., Hsia J.A et al.; ACCESS Study Group. Atorvastatin Comparative Cholesterol Efficacy and Safety Study. Correlation of non-high-density lipoprotein cholesterol with apolipoprotein B: effect of 5 hydroxymethylglutaryl coenzyme A reductase inhibitors on non-high-density lipoprotein cholesterol levels. Am J Cardiol. 2001; 88(3): 265–69.https://dx.doi.org/10.1016/s0002-9149(01)01638-1.


9. Jones P.H., Hunninghake D.B., Ferdinand K.C. et al.; Statin Therapies for Elevated Lipid Levels Compared Across Doses to Rosuvastatin Study Group. Effects of rosuvastatin versus atorvastatin, simvastatin, and pravastatin on non-high-density lipoprotein cholesterol, apolipoproteins, and lipid ratios in patients with hypercholesterolemia: additional results from the STELLAR trial. Clin Ther. 2004; 26(9): 1388–99. https://dx.doi.org/10.1016/j.clinthera.2004.09.006.


10. Stein E.A., Lane M., Laskarzewski P. Comparison of statins in hypertriglyceridemia. Am J Cardiol. 1998; 81(4A): 66B–69B.https://dx.doi.org/10.1016/s0002-9149(98)00041-1.


11. van Capelleveen J.C., van der Valk F.M., Stroes E.S. Current therapies for lowering lipoprotein (a). J Lipid Res. 2016; 57(9): 1612–18. https://dx.doi.org/10.1194/jlr.R053066.


12. Adams S.P., Tsang M., Wright J.M. Lipid-lowering efficacy of atorvastatin. Cochrane Database Syst Rev. 2015; 2015(3): CD008226. https://dx.doi.org/10.1002/14651858.CD008226.pub3.


13. Liao J.K. Clinical implications for statin pleiotropy. Curr Opin Lipidol. 2005; 16(6): 624–29.https://dx.doi.org/10.1097/01.mol.0000191913.16321.60.


14. Joshi P.H., Jacobson T.A. Therapeutic options to further lower C-reactive protein for patients on statin treatment. Curr Atheroscler Rep. 2010; 12(1): 34–42. https://dx.doi.org/10.1007/s11883-009-0075-x.


15. Sirtori C.R. The pharmacology of statins. Pharmacol Res. 2014; 88: 3–11. https://dx.doi.org/10.1016/j.phrs.2014.03.002.


16. Bellosta S., Corsini A.. Statin drug interactions and related adverse reactions: an update. Expert Opin Drug Saf. 2018 Jan;17(1):25-37. doi: 10.1080/14740338.2018.1394455.


17. Awad K., Serban M.C., Penson P. et al.; Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Effects of morning vs evening statin administration on lipid profile: A systematic review and meta-analysis. J Clin Lipidol. 2017; 11(4): 972–85.e9.https://dx.doi.org/10.1016/j.jacl.2017.06.001.


18. Kellick K.A., Bottorff M., Toth P.P. The National Lipid Association’s Safety Task Force. A clinician’s guide to statin drug-drug interactions. J Clin Lipidol. 2014; 8(3 Suppl): S30–46. https://dx.doi.org/10.1016/j.jacl.2014.02.010.


19. Reiner Z. Resistance and intolerance to statins. Nutr Metab Cardiovasc Dis. 2014; 24(10): 1057–66.https://dx.doi.org/10.1016/j.numecd.2014.05.009.


20. Krishnamurthy A., Bradley C., Ascunce R., Kim S.M. SAMSON and the nocebo effect: Management of statin intolerance. Curr Cardiol Rep. 2022; 24(9): 1101–8. https://dx.doi.org/10.1007/s11886-022-01729-x.


21. Sattar N., Preiss D., Murray H.M. et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010; 375(9716): 735–42. https://dx.doi.org/10.1016/S0140-6736(09)61965-6.


22. Rojas-Fernandez C.H., Goldstein L.B., Levey A.I. The National Lipid Association’s Safety Task Force. An assessment by the Statin Cognitive Safety Task Force: 2014 update. J Clin Lipidol. 2014; 8(3 Suppl): S5–16. https://dx.doi.org/10.1016/j.jacl.2014.02.013.


23. Newman C.B., Preiss D., Tobert J.A. American Heart Association Clinical Lipidology, Lipoprotein, Metabolism and Thrombosis Committee, a Joint Committee of the Council on Atherosclerosis, Thrombosis and Vascular Biology and Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology; and Stroke Council. Statin safety and associated adverse events: A scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2019; 39(2): e38–e81. https://dx.doi.org/10.1161/ATV.0000000000000073.


24. Bays H., Cohen D.E., Chalasani N., Harrison S.A.; The National Lipid Association’s Statin Safety Task Force. An assessment by the Statin Liver Safety Task Force: 2014 update. J Clin Lipidol. 2014 May-Jun; 8(3 Suppl): S47–57.https://dx.doi.org/10.1016/j.jacl.2014.02.011.


25. Russo M.W., Scobey M., Bonkovsky H.L. Drug-induced liver injury associated with statins. Semin Liver Dis. 2009; 29(4): 412–22. https://dx.doi.org/10.1055/s-0029-1240010.


26. Nikolic D., Banach M., Chianetta R. et al. An overview of statin-induced myopathy and perspectives for the future. Expert Opin Drug Saf. 2020; 19(5): 601–15. https://dx.doi.org/10.1080/14740338.2020.1747431.


27. Kosoglou T., Statkevich P., Johnson-Levonas A.O. et al. Ezetimibe: A review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet. 2005; 44(5): 467–94. https://dx.doi.org/10.2165/00003088-200544050-00002.


28. Vavlukis M., Vavlukis A. Adding ezetimibe to statin therapy: Latest evidence and clinical implications. Drugs Context. 2018; 7: 212534. https://dx.doi.org/10.7573/dic.212534.


29. Cannon C.P., Blazing M.A., Giugliano R.P. et al.; IMPROVE-IT Investigators. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015; 372(25): 2387–97. https://dx.doi.org/10.1056/NEJMoa1410489.


30. Ezetimibe (Zetia) Use During Pregnancy. URL: Drugs.com. Archived from the original on 05 May 2023. Retrieved 05 May 2023 (date of access – 01.05.2023).


31. Stoekenbroek R.M., Lambert G., Cariou B., Hovingh G.K. Inhibiting PCSK9 – Biology beyond LDL control. Nat Rev Endocrinol. 2018; 15(1): 52–62. https://dx.doi.org/10.1038/s41574-018-0110-5.


32. Kosmas C.E., DeJesus E.. Proprotein convertase subtilisin/kexin type 9 inhibitors: An emerging chapter in the field of clinical lipidology. Enliven Clin Cardiol Res. 2015; 2 :E1. URL:https://www.enlivenarchive.org/articles/proprotein-convertase-subtilisinkexin-type-9-inhibitors-an-emerging-chapter-in-the-field-of-clinical-lipidology.pdf (date of access – 01.05.2023).


33. Sabatine M.S., Giugliano R.P., Wiviott S.D. et al. Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) Investigators. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015; 372(16): 1500–9. https://dx.doi.org/10.1056/NEJMoa1500858.


34. Robinson J.G., Farnier M., Krempf M. et al.; ODYSSEY LONG TERM Investigators. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015; 372(16): 1489–99. https://dx.doi.org/10.1056/NEJMoa1501031.


35. Schwartz G.G., Steg P.G., Szarek M. et al. ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018; 379(22): 2097–107. https://dx.doi.org/10.1056/NEJMoa1801174.


36. Sabatine M.S., Giugliano R.P., Keech A.C. et al. FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017; 376(18): 1713–22. https://dx.doi.org/10.1056/NEJMoa1615664.


37. Ray K.K., Colhoun H.M., Szarek M. et al. ODYSSEY OUTCOMES Committees and Investigators. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol. 2019; 7(8): 618–28.https://dx.doi.org/10.1016/S2213-8587(19)30158-5.


38. Jukema J.W., Szarek M., Zijlstra L.E. et al.; ODYSSEY OUTCOMES Committees and Investigators. Alirocumab in patients with polyvascular disease and recent acute coronary syndrome: ODYSSEY OUTCOMES trial. J Am Coll Cardiol. 2019; 74(9): 1167–76. https://dx.doi.org/10.1016/j.jacc.2019.03.013.


39. Diaz R., Li Q.H., Bhatt D.L. et al.; ODYSSEY OUTCOMES Committees and Investigators. Intensity of statin treatment after acute coronary syndrome, residual risk, and its modification by alirocumab: Insights from the ODYSSEY OUTCOMES trial. Eur J Prev Cardiol. 2021; 28(1): 33–43. https://dx.doi.org/10.1177/2047487320941987.


40. Gencer B., Mach F., Murphy S.A. et al. Efficacy of evolocumab on cardiovascular outcomes in patients with recent myocardial infarction: A prespecified secondary analysis from the FOURIER trial. JAMA Cardiol. 2020; 5(8): 952–57.https://dx.doi.org/10.1001/jamacardio.2020.0882.


41. Gaba P., O’Donoghue M.L., Park J.G. et al. Association between achieved low-density lipoprotein cholesterol levels and long-term cardiovascular and safety outcomes: An analysis of FOURIER-OLE. Circulation. 2023; 147(16): 1192–203.https://dx.doi.org/10.1161/CIRCULATIONAHA.122.063399.


42. Nicholls S.J., Puri R., Anderson T. et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: The GLAGOV randomized clinical trial. JAMA. 2016; 316(22): 2373–84. https://dx.doi.org/10.1001/jama.2016.16951.


43. Nicholls S.J., Kataoka Y., Nissen S.E. et al. Effect of evolocumab on coronary plaque phenotype and burden in statin-treated patients following myocardial infarction. JACC Cardiovasc Imaging. 2022; 15(7): 1308–21.https://dx.doi.org/10.1016/j.jcmg.2022.03.002.


44. Raber L., Ueki Y., Otsuka T. et al; PACMAN-AMI collaborators. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction: The PACMAN-AMI randomized clinical trial. JAMA. 2022; 327(18): 1771–81. https://dx.doi.org/10.1001/jama.2022.5218.


45. Sun J., Lepor N.E., Canton G. et al. Serial magnetic resonance imaging detects a rapid reduction in plaque lipid content under PCSK9 inhibition with alirocumab. Int J Cardiovasc Imaging. 2021; 37(4): 1–8. https://dx.doi.org/10.1007/s10554-020-02115-w.


46. Lepor N.E., Sun J., Canton G. et al. Regression in carotid plaque lipid content and neovasculature with PCSK9 inhibition: A time course study. Atherosclerosis. 2021; 327: 31–38. https://dx.doi.org/10.1016/j.atherosclerosis.2021.05.008.


47. Khvorova A. Oligonucleotide therapeutics – A new class of cholesterol-lowering drugs. N Engl J Med. 2017; 376(1): 4–7.https://dx.doi.org/10.1056/NEJMp1614154.


48. German C.A., Shapiro M.D. Small interfering RNA therapeutic inclisiran: A new approach to targeting PCSK9. BioDrugs. 2020; 34(1): 1–9. https://dx.doi.org/10.1007/s40259-019-00399-6.


49. Ray K.K., Wright R.S., Kallend D. et al. ORION-10 and ORION-11 Investigators. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020; 382(16): 1507–19. https://dx.doi.org/10.1056/NEJMoa1912387.


50. Wright R.S., Collins M.G., Stoekenbroek R.M. et al. Effects of renal impairment on the pharmacokinetics, efficacy, and safety of inclisiran: An analysis of the ORION-7 and ORION-1 studies. Mayo Clin Proc 2020; 95(1): 77–89.https://dx.doi.org/10.1016/j.mayocp.2019.08.021.


51. Mercep I., Friscic N., Strikic D., Reiner Z. Advantages and disadvantages of inclisiran: A small interfering ribonucleic acid molecule targeting PCSK9 – A narrative review. Cardiovasc Ther. 2022; 2022: 8129513. https://dx.doi.org/10.1155/2022/8129513.


52. Ray K.K., Raal F.J., Kallend D.G. et al. ORION Phase III investigators. Inclisiran and cardiovascular events: A patient-level analysis of phase III trials. Eur Heart J. 2023; 44(2): 129–38. https://dx.doi.org/10.1093/eurheartj/ehac594.


53. ClinicalTrials.gov. NCT0503428, study of inclisiran to prevent cardiovascular (CV) events in participants with established cardiovascular disease (VICTORION-2P). URL: https://clinicaltrials.gov/ct2/show/NCT05030428 (date of access – 01.05.2023).


54. Reijman M.D., Schweizer A., Peterson A.L.H. Rationale and design of two trials assessing the efficacy, safety, and tolerability of inclisiran in adolescents with homozygous and heterozygous familial hypercholesterolaemia. Eur J Prev Cardiol. 2022; 29(9): 1361–68. https://dx.doi.org/10.1093/eurjpc/zwac025.


55. Frampton J.E. Inclisiran: A review in hypercholesterolemia. Am J Cardiovasc Drugs. 2023; 23(2): 219–30.https://dx.doi.org/10.1007/s40256-023-00568-7.


56. Сергиенко И.В., Недогода С.В., Верткин А.Л. с саовт. Актуальные вопросы повышения доступности инновационной терапии и организации медицинской помощи пациентам с атеросклеротическими сердечно-сосудистыми заболеваниями в Российской Федерации. Совет экспертов. Атеросклероз и дислипидемии. 2022; (4): 54–61. [Sergienko I.V., Nedogoda S.V., Vertkin A.L. et al. Topical issues of increasing the availability of innovative therapy and of the organization of medical care for patients with atherosclerotic cardiovascular diseases in the Russian Federation. Expert council. Ateroskleroz i dislipidemii = Atherosclerosis and Dyslipidemia. 2022; (4): 54–61 (In Russ.)].https://dx.doi.org/10.34687/2219-8202.JAD.2022.04.0006. EDN: CVUPPX.


57. Bilen O., Ballantyne C.M. Bempedoic acid (ETC-1002): An investigational inhibitor of atp citrate lyase. Curr Atheroscler Rep. 2016; 18(10): 61. https://dx.doi.org/10.1007/s11883-016-0611-4.


58. Filippov S, Pinkosky SL, Lister RJ, Pawloski C. et al. ETC-1002 regulates immune response, leukocyte homing, and adipose tissue inflammation via LKB1-dependent activation of macrophage AMPK. J Lipid Res. 2013; 54(8): 2095–108.https://dx.doi.org/10.1194/jlr.M035212.


59. Pinkosky S.L., Groot P.H.E., Lalwani N.D., Steinberg G.R. Targeting ATP-citrate lyase in hyperlipidemia and metabolic disorders. Trends Mol Med. 2017; 23(11): 1047–63. https://dx.doi.org/10.1016/j.molmed.2017.09.001.


60. Sirtori C.R., Yamashita S., Greco M.F. et al. Recent advances in synthetic pharmacotherapies for dyslipidaemias. Eur J Prev Cardiol. 2020; 27(15): 1576–96. https://dx.doi.org/10.1177/2047487319845314.


61. Ballantyne C.M., McKenney J.M., MacDougall D.E. et al. Effect of ETC-1002 on serum low-density lipoprotein cholesterol in hypercholesterolemic patients receiving statin therapy. Am J Cardiol. 2016; 117(12): 1928–33.https://dx.doi.org/10.1016/j.amjcard.2016.03.043.


62. Ray K.K., Bays H.E., Catapano A.L. et al. CLEAR Harmony Trial. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N Engl J Med. 2019; 380(11):1022–32. https://dx.doi.org/10.1056/NEJMoa1803917.


63. Jia X., Virani S.S. CLEAR Serenity Trial: More clarity for the future of bempedoic acid in patients unable to take statins? J Am Heart Assoc. 2019; 8(7): e012352. https://dx.doi.org/10.1161/JAHA.119.012352.


64. Ballantyne C.M., Banach M., Mancini G.B.J. et al. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study. Atherosclerosis. 2018; 277: 195–203.https://dx.doi.org/10.1016/j.atherosclerosis.2018.06.002.


65. Cicero A.F.G., Pontremoli R., Fogacci F. et al. Effect of bempedoic acid on serum uric acid and related outcomes: A systematic review and meta-analysis of the available phase 2 and phase 3 clinical studies. Drug Saf. 2020; 43(8): 727–36.https://dx.doi.org/10.1007/s40264-020-00931-6.


66. Cicero A.F.G., Fogacci F., Hernandez A.V., Banach M. Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group and the International Lipid Expert Panel (ILEP). Efficacy and safety of bempedoic acid for the treatment of hypercholesterolemia: A systematic review and meta-analysis. PLoS Med. 2020; 17(7): e1003121. https://dx.doi.org/10.1371/journal.pmed.1003121.


67. Nissen S.E., Lincoff A.M,. Brennan D. et al; CLEAR Outcomes Investigators. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N Engl J Med. 2023; 388(15): 1353–64. https://dx.doi.org/10.1056/NEJMoa2215024


68. Hudson V. The dyslipidaemia market. Nat Rev Drug Discov. 2014; 13(11): 807–8. https://dx.doi.org/10.1038/nrd4475.


69. Sampietro T., Sbrana F., Bigazzi F. et al. The incidence of cardiovascular events is largely reduced in patients with maximally tolerated drug therapy and lipoprotein apheresis. A single-center experience. Atheroscler Suppl. 2015; 18: 268–72.https://dx.doi.org/10.1016/j.atherosclerosissup.2015.02.040.


70. Osterberg L., Blaschke T. et al. Adherence to medication. N Engl J Med. 2005; 353(5): 487–97.https://dx.doi.org/10.1056/NEJMra050100.


71. Sampietro T., Sbrana F., Bigazzi F. et al. The incidence of cardiovascular events is largely reduced in patients with maximally tolerated drug therapy and lipoprotein apheresis. A single-center experience. Atheroscler Suppl. 2015; 18: 268–72.https://dx.doi.org/10.1016/j.atherosclerosissup.2015.02.040.


72. Vermeire E., Hearnshaw H., Van Royen P., Denekens J. Patient adherence to treatment: three decades of research. A comprehensive review. J Clin Pharm Ther. 2001; 26(5): 331–42. https://dx.doi.org/10.1046/j.1365-2710.2001.00363.x.


73. Sampietro T., Sbrana F., Bigazzi F. et al.; Certi Study Group. Cost-effectiveness study on the use of PCSK9 inhibitors in Tuscany – CERTI Study. Italiano Dell’Arterioscler. 2020; 11: 30–47.


74. Lloyd-Jones D.M., Morris P.B., Ballantyne C.M. et al. 2022 ACC expert consensus decision pathway on the role of nonstatin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: A report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2022; 80(14): 1366–418. https://dx.doi.org/10.1016/j.jacc.2022.07.006.


About the Autors


Olga I. Boeva, MD, associate professor, professor of the Department of therapy, cardiology and functional diagnostics with the course of nephrology, Central State Medical Academy of the Administration of the President of the Russian Federation, general practitioner of Polyclinic No.1 of the Administration of the President of the Russian Federation. Address: 119002, Moscow, 26/28, building 1 Sivtsev Vrazhek Lane. E-mail: box0271@mail.ru.
ORCID: https://orcid.org/0000-0002-1816-8309
Valentin A. Kokorin, MD, associate professor, professor of the Department of hospital therapy named after academician P.E. Lukomsky of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 111539, Moscow, 23 Veshnyakovskaya Str. E-mail: valentinkokorin@yahoo.com. ORCID: https://orcid.org/0000-0001-8614-6542
Vladimir V. Latiy, general practitioner of Polyclinic No.1 of the Administration of the President of the Russian Federation. Address: 119002, Moscow, 26/28, bldg 1 Sivtsev Vrazhek Lane. E-mail: vv_00@list.ru.
ORCID: https://orcid.org/0000-0002-5317-0543


Similar Articles


Бионика Медиа