Gliflozins in non-alcoholic fatty liver disease: Perspectives of use outside diabetes, cardiac and nephroprotection


DOI: https://dx.doi.org/10.18565/therapy.2023.7.130-141

Prikhodko V.A., Okovity S.V., Kulikov A.N.

1) Saint Petersburg State Chemical Pharmaceutical University of the Ministry of Healthcare of Russia; 2) Academician I.P. Pavlov First Saint Petersburg State Medical University of the Ministry of Healthcare of Russia
Summary. Gliflozins (inhibitors of sodium glucose cotransporters, SGLT) are one of the most numerous groups of antidiabetic remedies today. In addition to the direct hypoglycemic action, these medicines have a wide range of pleiotropic effects, from which cardio- and renoprotective are the most well-known. In the last decade, at least equal attention of researchers has been attracted by the ability of gliflozins to have a positive effect on the course of non-alcoholic fatty liver disease (NAFLD), realized through a number of secondary mechanisms. Current review contains data concerning the features of hepatoprotective effect of gliflozins, as well as an analysis of the current plan of clinical trials of this group of drugs in the case of NAFLD.

Literature


1. Abdul-Ghani M.A., Norton L., Defronzo R.A. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011; 32(4): 515–31. https://dx.doi.org/10.1210/er.2010-0029.


2. Fonseca-Correa J.I., Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: A review. Front Med (Lausanne). 2021; 8: 777861. https://dx.doi.org/10.3389/fmed.2021.777861.


3. Fagerberg L., Hallstrom B.M., Oksvold P. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014; 13(2): 397–406. https://dx.doi.org/10.1074/mcp.M113.035600.


4. Roder P.V., Geillinger K.E., Zietek T.S. et al. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One. 2014; 9(2): e89977. https://dx.doi.org/10.1371/journal.pone.0089977.


5. Ehrenkranz J.R.L., Lewis N.G., Kahn C.R., Roth J. Phlorizin: A review. Diabetes Metab Res Rev. 2005; 21(1): 31–38. https://dx.doi.org/10.1002/dmrr.532.


6. Haider K., Pathak A., Rohilla A. et al. Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor: A review. Eur J Med Chem. 2019; 184: 111773. https://dx.doi.org/10.1016/j.ejmech.2019.111773.


7. Shibazaki T., Tomae M., Ishikawa-Takemura Y. et al. KGA-2727, a novel selective inhibitor of a high-affinity sodium glucose cotransporter (SGLT1), exhibits antidiabetic efficacy in rodent models. J Pharmacol Exp Ther. 2012; 342(2): 288–96. https://dx.doi.org/10.1124/jpet.112.193045.


8. Madaan T., Akhtar M., Najmi A.K. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective. Eur J Pharm Sci. 2016; 93: 244–52. https://dx.doi.org/10.1016/j.ejps.2016.08.025.


9. Cinti F., Moffa S., Impronta F. et al. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: Evidence to date. Drug Des Devel Ther. 2017; 11: 2905–19. https://dx.doi.org/10.2147/DDDT.S114932.


10. Inoue T., Takemura M., Fushimi N. et al. Mizagliflozin, a novel selective SGLT1 inhibitor, exhibits potential in the amelioration of chronic constipation. Eur J Pharmacol. 2017; 806: 25–31. https://dx.doi.org/10.1016/j.ejphar.2017.04.010.


11. Bays H.E., Kozlovski P., Shao Q. et al. Licogliflozin, a novel SGLT1 and 2 inhibitor: Body weight effects in a randomized trial in adults with overweight or obesity. Obesity (Silver Spring). 2020; 28(5): 870–81. https://dx.doi.org/10.1002/oby.22764.


12. Yang Y.S., Min K.W., Park S.O. et al. Efficacy and safety of monotherapy with enavogliflozin in Korean patients with type 2 diabetes mellitus: Results of a 12-week, multicentre, randomized, double-blind, placebo-controlled, phase 2 trial. Diabetes Obes Metab. 2023; 25(8): 2096–104. https://dx.doi.org/10.1111/dom.15080.


13. DrugBank. URL: https://go.drugbank.com/ (date of access – 14.08.2023).


14. European Medicines Agency (EMA). Jardiance 25 mg film-coated tablets. Summary of product characteristics. URL: https://www.ema. europa.eu/en/documents/product-information/jardiance-epar-product-information_en.pdf (date of access – 14.08.2023).


15. European Medicines Agency (EMA). Invokana 100 mg film-coated tablets. Summary of product characteristics. URL: https://www.ema.europa.eu/en/documents/product-information/invokana-epar-product-information_en.pdf (date of access – 14.08.2023).


16. European Medicines Agency (EMA). Steglatro 15 mg film-coated tablets. Summary of product characteristics. URL: https://www.ema.europa.eu/en/documents/product-information/steglatro-epar-product-information_en.pdf (date of access – 14.08.2023).


17. Oku A., Ueta K., Arakawa K. et al. T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes. 1999; 48(9): 1794–800. https://dx.doi.org/10.2337/diabetes.48.9.1794.


18. European Medicines Agency (EMA). Forxiga EPAR. URL: https://www.ema.europa.eu/en/medicines/human/EPAR/forxiga (date of access – 14.08.2023).


19. U.S. Food and Drug Administration. Drug approval package: Farxiga (dapagliflozin) tablets NDA #202293. URL: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/202293Orig1s000TOC.cfm (date of access – 14.08.2023).


20. U.S. Food and Drug Administration (FDA). Drug approval package: Invokana (canagliflozin) tablets NDA #204042. URL: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204042Orig1s000TOC.cfm (date of access – 14.08.2023).


21. European Medicines Agency (EMA). Invokana EPAR. URL: https://www.ema.europa.eu/en/medicines/human/EPAR/invokana (date of access – 14.08.2023).


22. U.S. Food and Drug Administration (FDA). FDA approves Jardiance to treat type 2 diabetes (Press release). URL: https://wayback.archive-it.org/7993/20161022200046/http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ ucm407637.htm (date of access – 14.08.2023).


23. Jardiance EPAR. European Medicines Agency (EMA). URL: https://www.ema.europa.eu/en/medicines/human/EPAR/jardiance (date of access – 14.08.2023).


24. Lago R.M., Singh P.P., Nesto R.W. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: A meta-analysis of randomised clinical trials. Lancet. 2007; 370(9593): 1129–36. https://dx.doi.org/10.1016/S0140-6736(07)61514-1.


25. Pantalone K.M., Kattan M.W., Yu C. et al. The risk of developing coronary artery disease or congestive heart failure, and overall mortality, in type 2 diabetic patients receiving rosiglitazone, pioglitazone, metformin, or sulfonylureas: A retrospective analysis. Acta Diabetol. 2009; 46(2): 145–54. https://dx.doi.org/10.1007/s00592-008-0090-3.


26. Tzoulaki I., Molokhia M., Curcin V. et al. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: Retrospective cohort study using UK general practice research database. BMJ. 2009; 339: b4731. https://dx.doi.org/10.1136/bmj.b4731.


27. Scirica B.M., Braunwald E., Raz I. et al.; SAVOR-TIMI 53 Steering Committee and Investigators. Heart failure, saxagliptin, and diabetes mellitus: Observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014; 130(18): 1579–88. https://dx.doi.org/10.1161/CIRCULATIONAHA.114.010389.


28. Gilbert R.E., Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet. 2015; 385(9982): 2107–17. https://dx.doi.org/10.1016/S0140-6736(14)61402-1.


29. Guidance for industry: Diabetes mellitus evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. U.S. Department of Health and Human Services; Food and Drug Administration; Center for Drug Evaluation and Research (CDER). December 2008. URL: https://www.federalregister.gov/documents/2008/12/19/E8-30086/guidance-for-industry-on-diabetes- mellitus-evaluating-cardiovascular-risk-in-new-antidiabetic (date of access – 14.08.2023).


30. Zinman B., Wanner C., Lachin J.M. et al.; EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373(22): 2117–28. https://dx.doi.org/10.1056/NEJMoa1504720.


31. Wanner C., Inzucchi S.E., Lachin J.M. et al.; EMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016; 375(4): 323–34. https://dx.doi.org/10.1056/NEJMoa1515920.


32. Neal B., Perkovic V., Mahaffey K.W. et al.; CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377(21): 644–57. https://dx.doi.org/10.1056/NEJMoa1611925.


33. Perkovic V., Jardine M.J., Neal B. et sl.; CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019; 380(24): 2295–306. https://dx.doi.org/10.1056/NEJMoa181174.


34. Wiviott S., Raz I., Bonaca M.P. et al.; DECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380(4): 347–57. https://dx.doi.org/10.1056/NEJMoa1812389.


35. Bhatt D.L., Szarek M., Steg P.G. et al.; SOLOIST-WHF Trial Investigators. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021; 384(2): 117–28. https://dx.doi.org/10.1056/NEJMoa2030183.


36. Bhatt DL, Szarek M, Pitt B. et al.; SCORED Investigators. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021; 384(2): 129–39. https://dx.doi.org/10.1056/NEJMoa2030186.


37. Куликов А.Н., Оковитый С.В., Ивкин Д.Ю. с соавт. Эффекты эмпаглифлозина при экспериментальной модели хронической сердечной недостаточности у крыс с нормогликемией. Журнал сердечная недостаточность. 2016; 17(6): 454–460 [Kulikov A.N., Okovity S.V., Ivkin D.Yu. et al. Effects of empagliflozin in an experimental model of chronic heart failure in normoglycemic rats. Zhurnal serdechnaya nedostatochnost’ = Russian Heart Failure Journal. 2016; 17(6): 454–460 (In Russ.)]. https://dx.doi.org/10.18087/rhfj.2016.6.2289. EDN: XIMJFR.


38. Byrne N.J., Parajuli N., Levasseur J.L. et al. Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Transl Sci. 2017; 2(4): 347–54. https://dx.doi.org/10.1016/j.jacbts.2017.07.003.


39. Lim V.G., Bell R.M., Arjun S. et al. SGLT2 inhibitor, canagliflozin, attenuates myocardial infarction in the diabetic and nondiabetic heart. JACC Basic Transl Sci. 2019; 4(1): 15–26. https://dx.doi.org/10.1016/j.jacbts.2018.10.002.


40. Yurista S.R., Sillje H.H.W., Oberdor-Maass S.U. et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail. 2019; 21(7): 862–73. https://dx.doi.org/10.1002/ejhf.1473


41. Zhang Y., Nakano D., Guan Y. et al. A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor-dependent pathway after renal injury in mice. Kidney Int. 2018; 94(3): 524–35. https://dx.doi.org/10.1016/j.kint.2018.05.002.


42. Cassis P., Locatelli M., Cerullo D. et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight. 2018; 3(15): e98720. https://dx.doi.org/10.1172/jci.insight.98720


43. Yamato M., Kato N., Kakino A. et al. Low dose of sodium-glucose transporter 2 inhibitor ipragliflozin attenuated renal dysfunction and interstitial fibrosis in adenine-induced chronic kidney disease in mice without diabetes. Metabol Open. 2020; 7: 100049. https://dx.doi.org/10.1016/j.metop.2020


44. McMurray J.J.V., Solomon S.D., Inzucchi S.E. et al.; DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381(21): 1995–2008. https://dx.doi.org/10.1056/NEJMoa1911303.


45. Packer M., Anker S.D., Butler J. et al.; EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383(15): 1413–24. https://dx.doi.org/10.1056/NEJMoa2022190.


46. Anker S.D., Butler J., Filippatos G., Ferreira J.P. et al.; EMPEROR-Preserved Trial Investigators. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021; 385(16): 1451–61. https://dx.doi.org/10.1056/NEJMoa2107038.


47. Solomon S.D., McMurray J.J.V., Claggett B. et al.; DELIVER Trial Committees and Investigators. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022; 387(12): 1089–98. https://dx.doi.org/10.1056/NEJMoa2206286.


48. Heerspink H.J., Stefansson B.V., Correa-Rotter R. et al.; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020; 383(15): 1436–46. https://dx.doi.org/10.1056/NEJMoa2024816.


49. The EMPA-KIDNEY Collaborative Group; Herrington W.G., Staplin N., Wanner C. et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2023; 388(2): 117–27. https://dx.doi.org/10.1056/NEJMoa2204233.


50. Sumida Y., Yoneda M., Toyoda H. et al.; Japan Study Group Of NAFLD JSG-NAFLD. Common drug pipelines for the treatment of diabetic nephropathy and hepatopathy: Can we kill two birds with one stone? Int J Mol Sci. 2020; 21(14): 4939. https://dx.doi.org/10.3390/ijms21144939.


51. Rieg J.A.D., Rieg T. What does SGLT1 inhibition add: Prospects for dual inhibition. Diabetes Obes Metab. 2019; 21(Suppl 2): 43–52. https://dx.doi.org/10.1111/dom.13630.


52. Sharma D., Verma S., Vaidya S. et al. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother. 2018; 108: 952–62. https://dx.doi.org/10.1016/j.biopha.2018.08.088.


53. Wang X.C., Gusdon A.M., Liu H., Qu S. Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation. World J Gastroenterol. 2014; 20(40): 14821–30. https://dx.doi.org/10.3748/wjg.v20.i40.14821.


54. Samson S.L., Sathyanarayana P., Jogi M. et al. Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial. Diabetologia. 2011; 54(12): 3093–100. https://dx.doi.org/10.1007/s00125-011-2317-z.


55. Karra E., Chandarana K., Batterham R.L. The role of peptide YY in appetite regulation and obesity. J Physiol. 2009; 587(Pt 1): 19–25. https://dx.doi.org/10.1113/jphysiol.2008.164269.


56. Aso Y., Kato K., Sakurai S. et al. Impact of dapagliflozin, an SGLT2 inhibitor, on serum levels of soluble dipeptidyl peptidase-4 in patients with type 2 diabetes and non-alcoholic fatty liver disease. Int J Clin Pract. 2019; 73(5): e13335. https://dx.doi.org/10.1111/ijcp.13335.


57. Sumida Y., Yoneda M., Tokushige K. et al. Hepatoprotective effect of SGLT2 inhibitor on nonalcoholic fatty liver disease. Diab Res Open Access. 2020; 2(S1): 17–25. https://dx.doi.org/10.36502/2020/droa.6159.


58. Mistry S., Eschler D.C. Euglycemic diabetic ketoacidosis caused by SGLT2 inhibitors and a ketogenic diet: A case series and review of literature. AACE Clin Case Rep. 2021; 7(1): 17–19. https://dx.doi.org/10.1016/j.aace.2020.11.009.


59. Packer M. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis. Diabetes Obes Metab. 2018; 20(6): 1361–66. https://dx.doi.org/10.1111/dom.13229.


60. Joshi S.S., Singh T., Newby D.E., Singh J. Sodium-glucose co-transporter 2 inhibitor therapy: Mechanisms of action in heart failure. Heart. 2021; 107(13): 1032–38. https://dx.doi.org/10.1136/heartjnl-2020-318060.


61. Cheng F., Su S., Zhu X. et al. Leptin promotes methionine adenosyltransferase 2A expression in hepatic stellate cells by the downregulation of E2F-4 via the β-catenin pathway. FASEB J. 2020; 34(4): 5578–89. https://dx.doi.org/10.1096/fj.201903021RR.


62. Wu P., Wen W., Li J et al. Systematic review and meta-analysis of randomized controlled trials on the effect of SGLT2 inhibitor on blood leptin and adiponectin level in patients with type 2 diabetes. Horm Metab Res. 2019; 51(8): 487–94. https://dx.doi.org/10.1055/a-0958-2441.


63. Hsiang J.C., Wong V.W.S. SGLT2 Inhibitors in liver patients. Clin Gastroenterol Hepatol. 2020; 18(10): 2168–72.e2. https://dx.doi.org/10.1016/j.cgh.2020.05.021.


64. PubMed. URL: https://pubmed.ncbi.nlm.nih.gov/ (date of access – 14.08.2023).


65. ClinicalTrials.gov. URL: https://www.clinicaltrials.gov/ (date of access – 14.08.2023).


66. EudraCT (European Union Drug Regulating Authorities Clinical Trials Database). URL: https://eudract.ema.europa.eu/ (date of access – 14.08.2023).


67. ClinLine. URL: https://clinline.ru/ (date of access – 14.08.2023).


68. Arase Y., Shiraishi K., Anzai K. et al. Effect of sodium glucose co-transporter 2 inhibitors on liver fat mass and body composition in patients with nonalcoholic fatty liver disease and type 2 diabetes mellitus. Clin Drug Investig. 2019; 39(7): 631–41. https://dx.doi.org/10.1007/s40261-019-00785-6.


69. Eriksson J.W., Lundkvist P., Jansson P.A. et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: A double-blind randomised placebo-controlled study. Diabetologia. 2018; 61(9): 1923–34. https://dx.doi.org/10.1007/s00125-018-4675-2.


70. Choi D.H., Jung C.H., Mok J.O. et al. Effect of dapagliflozin on alanine aminotransferase improvement in type 2 diabetes mellitus with non-alcoholic fatty liver disease. Endocrinol Metab (Seoul). 2018; 33(3): 387–94. https://dx.doi.org/10.3803/EnM.2018.33.3.387.


71. Kinoshita T., Shimoda M., Nakashima K. et al. Comparison of the effects of three kinds of glucose-lowering drugs on non-alcoholic fatty liver disease in patients with type 2 diabetes: A randomized, open-label, three-arm, active control study. J Diabetes Investig. 2020; 11(6): 1612–22. https://dx.doi.org/10.1111/jdi.13279.


72. Cho K.Y., Nakamura A., Omori K. et al. Favorable effect of sodium-glucose cotransporter 2 inhibitor, dapagliflozin, on non-alcoholic fatty liver disease compared with pioglitazone. J Diabetes Investig. 2021; 12(7): 1272–77. https://dx.doi.org/10.1111/jdi.13457.


73. Gastaldelli A., Repetto E., Guja C. et al. Exenatide and dapagliflozin combination improves markers of liver steatosis and fibrosis in patients with type 2 diabetes. Diabetes Obes Metab. 2020; 22(3): 393–403. https://dx.doi.org/10.1111/dom.13907.


74. Koutsovasilis A., Sotiropoulos A., Peppas T. et al. Effectiveness of dapagliflozin in nonalcoholic fatty liver disease in type 2 diabetes patients compared to sitagliptin and pioglitazone. Proceedings of the EASD Meeting-2017. 2017; (1): 12.


75. Shimizu M., Suzuki K., Kato K. et al. Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes Metab. 2019; 21(2): 285–92. https://dx.doi.org/10.1111/dom.13520.


76. Ribeiro Dos Santos L., Baer Filho R. Treatment of nonalcoholic fatty liver disease with dapagliflozin in non-diabetic patients. Metabol Open. 2020; 5: 100028. https://dx.doi.org/10.1016/j.metop.2020.100028.


77. Takase T., Nakamura A., Miyoshi H. et al. Amelioration of fatty liver index in patients with type 2 diabetes on ipragliflozin: an association with glucose-lowering effects. Endocr J. 2017; 64(3): 363–67. https://dx.doi.org/10.1507/endocrj.EJ16-0295.


78. Seko Y., Sumida Y., Tanaka S. et al. Effect of sodium glucose cotransporter 2 inhibitor on liver function tests in Japanese patients with non-alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol Res. 2017; 47(10): 1072–78. https://dx.doi.org/10.1111/hepr.12834.


79. Ito D., Shimizu S., Inoue K. et al. Comparison of ipragliflozin and pioglitazone effects on nonalcoholic fatty liver disease in patients with type 2 diabetes: A randomized, 24-week, open-label, active-controlled trial. Diabetes Care. 2017; 40(10): 1364–72. https://dx.doi.org/10.2337/dc17-0518.


80. Han E., Lee Y.H., Lee B.W. et al. Ipragliflozin additively ameliorates non-alcoholic fatty liver disease in patients with type 2 diabetes controlled with metformin and pioglitazone: A 24-week randomized controlled trial. J Clin Med. 2020; 9(1): 259. https://dx.doi.org/10.3390/jcm9010259.


81. Takahashi H., Kessoku T., Kawanaka M. et al. Ipragliflozin improves the hepatic outcomes of patients with diabetes with NAFLD. Hepatol Commun. 2022; 6(1): 120–32. https://dx.doi.org/10.1002/hep4.1696.


82. Inoue M., Hayashi A., Taguchi T. et al. Effects of canagliflozin on body composition and hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease. J Diabetes Investig. 2019; 10(4): 1004–11. https://dx.doi.org/10.1111/jdi.12980.


83. Cusi K., Bril F., Barb D. et al. Effect of canagliflozin treatment on hepatic triglyceride content and glucose metabolism in patients with type 2 diabetes. Diabetes Obes Metab. 2019; 21(4): 812–21. https://dx.doi.org/10.1111/dom.13584.


84. Itani T., Ishihara T. Efficacy of canagliflozin against nonalcoholic fatty liver disease: A prospective cohort study. Obes Sci Pract. 2018; 4(5): 477–82. https://dx.doi.org/10.1002/osp4.294.


85. Shibuya T., Fushimi N., Kawai M. et al. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective randomized controlled pilot study. Diabetes Obes Metab. 2018; 20(2): 438–42. https://dx.doi.org/10.1111/dom.13061.


86. Sumida Y., Murotani K., Saito M. et al. Effect of luseogliflozin on hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective, single-arm trial (LEAD trial). Hepatol Res. 2019; 49(1): 64–71. https://dx.doi.org/10.1111/hepr.13236.


87. Wilkison B., Cheatham B., Walker S. et al. Remogliflozin etabonate reduces FIB-4 and NAFLD Fibrosis Scores in type 2 diabetic subjects. Hepatology. 2016; (Suppl 1): 548A.


88. Takeshita Y., Honda M., Harada K. et al. Comparison of tofogliflozin and glimepiride effects on nonalcoholic fatty liver disease in participants with type 2 diabetes: A randomized, 48-week, open-label, active-controlled trial. Diabetes Care. 2022; 45(9): 2064–75. https://dx.doi.org/10.2337/dc21-2049.


89. Yoneda M., Honda Y., Ogawa Y. et al. Comparing the effects of tofogliflozin and pioglitazone in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus (ToPiND study): A randomized prospective open-label controlled trial. BMJ Open Diabetes Res Care. 2021; 9(1): e001990. https://dx.doi.org/10.1136/bmjdrc-2020-001990.


90. Yoneda M., Kobayashi T., Honda Y. et al. Combination of tofogliflozin and pioglitazone for NAFLD: Extension to the ToPiND randomized controlled trial. Hepatol Commun. 2022; 6(9): 2273–85. https://dx.doi.org/10.1002/hep4.1993.


91. Sattar N., Fitchett D., Hantel S. et al. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: Results from randomised trials including the EMPA-REG OUTCOME® trial. Diabetologia. 2018; 61(10): 2155–63. https://dx.doi.org/10.1007/s00125-018-4702-3.


92. Shao S.C., Kuo L.T., Chien R.N. et al. SGLT2 inhibitors in patients with type 2 diabetes with non-alcoholic fatty liver diseases: an umbrella review of systematic reviews. BMJ Open Diabetes Res Care. 2020; 8(2): e001956. https://dx.doi.org/10.1136/bmjdrc-2020-001956.


93. Kuchay M.S., Krishan S., Mishra S.K. et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: A randomized controlled trial (E-LIFT trial). Diabetes Care. 2018; 41(8): 1801–8. https://dx.doi.org/10.2337/dc18-0165.


94. Kahl S., Gancheva S., Straßburger K. et al. Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes: A randomized, double-blind, phase 4, placebo-controlled trial. Diabetes Care. 2020; 43(2): 298–305. https://dx.doi.org/10.2337/dc19-0641.


95. Lai L.L., Vethakkan S.R., Nik Mustapha N.R. et al. Empagliflozin for the treatment of nonalcoholic steatohepatitis in patients with type 2 diabetes mellitus. Dig Dis Sci. 2020; 65(2): 623–31. https://dx.doi.org/10.1007/s10620-019-5477-1.


96. Chehrehgosha H., Sohrabi M.R., Ismail-Beigi F. et al. Empagliflozin improves liver steatosis and fibrosis in patients with non-alcoholic fatty liver disease and type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. Diabetes Ther. 2021; 12(3): 843–61. https://dx.doi.org/10.1007/s13300-021-01011-3.


97. Taheri H., Malek M., Ismail-Beigi F. et al. Effect of empagliflozin on liver steatosis and fibrosis in patients with non-alcoholic fatty liver disease without diabetes: A randomized, double-blind, placebo-controlled trial. Adv Ther. 2020; 37(11): 4697–708. https://dx.doi.org/10.1007/s12325-020-01498-5.


98. Gallo S., Calle R.A., Terra S.G. et al. Effects of ertugliflozin on liver enzymes in patients with type 2 diabetes: A post-hoc pooled analysis of phase 3 trials. Diabetes Ther. 2020; 11(8):1849–60. https://dx.doi.org/10.1007/s13300-020-00867-1.


99. Harrison S.A., Manghi F.P., Smith W.B. et al. Licogliflozin for nonalcoholic steatohepatitis: A randomized, double-blind, placebo- controlled, phase 2a study. Nat Med. 2022; 28(7):1432–38. https://dx.doi.org/10.1038/s41591-022-01861-9.


About the Autors


Veronika A. Prikhodko, assistant at the Department of pharmacology and clinical pharmacology, Saint Peters- burg State Chemical Pharmaceutical University of the Ministry of Healthcare of Russia. Address: 197022, Saint Petersburg, 14 lit. A Professora Popova Str.
E-mail: veronika.prihodko@pharminnotech.com ORCID: https://orcid.org/0000-0002-4690-1811
Sergey V. Okovity, MD, professor, head of the Department of pharmacology and clinical pharmacology, Saint Petersburg State Chemical Pharmaceutical University of the Ministry of Healthcare of Russia. Address: 197022, Saint Petersburg, 14 lit. A Professora Popova Str.
E-mail: sergey.okovity@pharminnotech.com ORCID: https://orcid.org/0000-0003-4294-5531
Alexander N. Kulikov, MD, professor, head of the Department of propaedeutics of internal diseases, Academi- cian I.P. Pavlov First Saint Petersburg State Medical University of the Ministry of Healthcare of Russia. Address: 197022, Saint Petersburg, 6–8 Lva Tolstogo Str.
E-mail: ankulikov2005@yandex.ru
ORCID: https://orcid.org/0000-0002-4544-2967


Similar Articles


Бионика Медиа