The clinical significance of blood leptin in patients with non-alcoholic fatty liver disease associated with obesity


DOI: https://dx.doi.org/10.18565/therapy.2019.3.43-48

Yagoda A.V., Geyvandova T.V., Rogova S.Sh., Geyvandova N.I.

Department of hospital therapy of Stavropol State medical University of the Ministry of Healthcare of Russia
The purpose is to define the clinical significance of blood leptin in patients with non-alcoholic fatty liver disease (NAFLD) associated with obesity.
Material and methods. 114 patients with NAFLD were examined. All patients had obesity or overweight. In 42 patients, non-alcoholic steatohepatitis was diagnosed, in other cases, steatosis was diagnosed. The comparison group consisted of 42 healthy individuals with BMI <25 and was comparable to patients by sex and age. The blood of patients was determined by the content of Lep, as well as Lep-R by ELISA.
Results and conclusion. It has been revealed that in patients with obesity-associated NAFLD, the level of leptin in the blood and the free leptin index are increased, and the Lep-R content is decreased. The indicators Lep and Lep-R are inversely related. Leptin content and Lep / Lep-R ratio were higher in women with NAFLD than in men, and sLep-R levels did not differ. The level of leptin in the blood had a direct dependence on body mass index, the ratio WC / WH, the values of the HOMA index, the values of LDL holesterol and triglycerides. Severe liver steatosis (grades 2 and 3) as well as advanced fibrosis stages (F-2 and F-3) were accompanied by an increase in plasma leptin and a decrease in sLep-R concentration, which reflected the important role of leptin and leptin resistance in the progression of non-alcoholic fatty liver disease.

Literature



  1. World Health Organization, Obesity and overweight. Fact sheet, updated June 2016. Geneva. Retrieved 22 Sept 2017.

  2. Byrne C.D., Targher G. NAFLD: a multisystem disease. J. Hepatol 2015; 62 (1): S47–S64.

  3. Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016; 64: 73–84.

  4. Sasaki A., Nitta H., Otsuka K., Umemura A., Baba S., Obuchi T., Wakabayashi G. Bariatric surgery and non-alcoholic fatty liver disease: current and potential future treatments. Front Endocrinol. 2014; 5: 164.

  5. Subichin M., Clanton J., Makuszewski M., Bohon A., Zografakis J.G., Dan A. Liver disease in the morbidly obese: a review of 1000 consecutive patients undergoing weight loss surgery. Surg. Obes. Relat. Dis. 2015; 11: 137–41.

  6. Kelesidis T., Kelesidis I., Chou S., Mantzoros C.S. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann. Intern. Med. 2010; 152: 93–100.

  7. Margetic S., Gazzola C., Pegg G.G., Hill R.A. Leptin: a review of its peripheral actions and interactions. Obesity and overweight. 2002; 26: 1407–33.

  8. Moon H.S., Dalamaga M., Kim S.Y., Polyzos S.A., Hamnvik O.P., Magkos F., Paruthi J., Mantzoros C.S. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr. Rev. 2013; 34: 377–412.

  9. Polyzos S.A., Mantzoros C.S. Leptin in health and disease: facts and expectations at its twentieth anniversary. Metabolism. 2015; 64: 5–12.

  10. Mantzoros C.S., Magkos F., Brinkoetter M., Sienkiewicz E., Dardeno T.A., Kim S.Y., Hamnvik O.P., Koniaris A. Leptin in human physiology and pathophysiology. Am. J. Physiol. Endocrinol. Metab. 2011; 301: 567–84.

  11. Yang R., Lili A. Barouch Leptin signaling and obesity. Cardiovascular consequences. Circ. Res. 2007; 101: 545–59.

  12. Myers M.G., Cowley M.A., Münzberg H. Mechanisms of leptin action and leptin resistance. Ann. Rev. Physiol. 2008; 70: 537–56.

  13. Lahlou N., Clement K., Carel J.C., Vaisse C., Lotton C., Le Bihan Y., Basdevant A., Lebouc Y., Froguel P., Roger M. Soluble leptin receptor in serum of subjects with complete resistance to leptin: relation to fat mass. Diabetes. 2000; 49: 1347–52.

  14. Смирнова Е.Н., Шулькина С.Г. Содержание лептина, растворимых рецепторов лептина и индекса свободного лептина у больных с метаболическим синдромом. Ожирение и метаболизм. 2017; 14: 30–34.

  15. Polyzos A.T., Aronis K.N., Kountouras J., Raptis D.D., Vasiloglou M.F., Mantzoros C.S. Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Diabetologia. 2016; 59: 30–43.

  16. Lammert A., Kiess W., Bottner A., Glasow A., Kratzsch J. Soluble leptin receptor represents the main leptin binding activity in human blood. Biochem. Biophys. Res. Commun. 2001; 283: 982–88.

  17. Huang X.D., Fan Y., Zhang H., Wang P., Ping J. Y., Li M.-J., Zhan X.-Y. Serum leptin and soluble leptin receptor in non-alcoholic fatty liver disease World J. Gastroenterol. 2008; 14: 2888–93.

  18. Гейвандова Н.И., Ягода А.В., Фалеева О.В., Корой П.В., Косторная И.В. Гормоны жировой ткани и гистологическая картина печени при хроническом гепатите С. Клинические перспективы гастроэнтерологии, гепатологии. 2012; 4: 17–22.

  19. Chitturi S., Farrell G., Frost L., Kriketos A., Lin R., Fung C., Liddle C., Samarasinghe D., George J. Serum leptin in NASH correlates with hepatic steatosisbut not fibrosis: a manifestation of lipotoxicity? Hepatology. 2002; 36: 403–09.

  20. Li X.-L, Sui J.-Q. , Lu L.-L., Zhang N.-N. , Xu X., Q.-Y. Dong, Xin Y.-N., Xuan S.-Y. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: a concise review. Lipids in Health and Disease. 2016; 15: 53.

  21. Zain S.M., Mohamed Z., Mahadeva, S., Cheah P. L., Rampal S., Chin K.F., Mahfudz A.S., Basu R.C., Tan H.L., R Mohamed R. Impact of leptin receptor gene variants on risk of non-alcoholic fatty liver disease and its interaction with adiponutrin gene. J. Gastroenterol. Hepatol. (Australia). 2013; 28: 873–79.

  22. Swellam M., Hamdy N. Association of nonalcoholic fatty liver disease with a single nucleotide polymorphism on the gene encoding leptin receptor. Epub 2012; 64: 180–86.

  23. Parker R. The role of adipose tissue in fatty liver diseases. Liver Res. 2018; 1: 35–42.

  24. Shen J., Sakaida I., Uchida K., Terai S., Okita K. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci. 2005; 77: 1502–15.

  25. Wang J., Leclercq I., Brymora J.M., Xu N., Ramezani-Moghadam M., London R.M., Brigstock D., George J. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 2009; 137: 713–23.


About the Autors


Alexander V. Yagoda, MD, professor, the Head of the Department of hospital therapy of Stavropol State medical University of the Ministry of Healthcare of Russia. Address: 355017, Stavropol, 310 Mira str. Tel.: +7 (906) 490-73-30. E-mail: alexander.yagoda@gmail.com
Tatiana V. Geyvandova, endocrinologist of the Stavropol State Clinical Diagnostic Center, applicant for the Department of hospital therapy of Stavropol State medical University of the Ministry of Healthcare of Russia. Address: 355017, Stavropol, 310 Mira str. Tel.: +7 (962) 446-28-96. E-mail: geyvandova89@mail.ru
Sofia Sh. Rogova, PhD, associate professor of the Department of clinical laboratory diagnostics with a course of bacteriology of Stavropol State medical University of the Ministry of Healthcare of Russia. Address: 355017, Stavropol, 310 Mira str. Tel.: +7 (962) 447-57-65. E-mail: dombay01@mail.ru
Natalya I. Geyvandova, MD, professor of the department of hospital therapy of Stavropol State medical University of the Ministry of Healthcare of Russia. Address: 355017, Stavropol, 310 Mira str. Tel.: +7 (962) 445-22-46.
E-mail: ngeyvandova@yandex.ru


Similar Articles


Бионика Медиа