DOI: https://dx.doi.org/10.18565/therapy.2023.7.130-141
В.А. Приходько, С.В. Оковитый, А.Н. Куликов
1) ФГБОУ ВО «Санкт-Петербургский государственный химико-фармацевтический университет» Минздрава России; 2) ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Минздрава России
1. Abdul-Ghani M.A., Norton L., Defronzo R.A. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011; 32(4): 515–31. https://dx.doi.org/10.1210/er.2010-0029. 2. Fonseca-Correa J.I., Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: A review. Front Med (Lausanne). 2021; 8: 777861. https://dx.doi.org/10.3389/fmed.2021.777861. 3. Fagerberg L., Hallstrom B.M., Oksvold P. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014; 13(2): 397–406. https://dx.doi.org/10.1074/mcp.M113.035600. 4. Roder P.V., Geillinger K.E., Zietek T.S. et al. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One. 2014; 9(2): e89977. https://dx.doi.org/10.1371/journal.pone.0089977. 5. Ehrenkranz J.R.L., Lewis N.G., Kahn C.R., Roth J. Phlorizin: A review. Diabetes Metab Res Rev. 2005; 21(1): 31–38. https://dx.doi.org/10.1002/dmrr.532. 6. Haider K., Pathak A., Rohilla A. et al. Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor: A review. Eur J Med Chem. 2019; 184: 111773. https://dx.doi.org/10.1016/j.ejmech.2019.111773. 7. Shibazaki T., Tomae M., Ishikawa-Takemura Y. et al. KGA-2727, a novel selective inhibitor of a high-affinity sodium glucose cotransporter (SGLT1), exhibits antidiabetic efficacy in rodent models. J Pharmacol Exp Ther. 2012; 342(2): 288–96. https://dx.doi.org/10.1124/jpet.112.193045. 8. Madaan T., Akhtar M., Najmi A.K. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective. Eur J Pharm Sci. 2016; 93: 244–52. https://dx.doi.org/10.1016/j.ejps.2016.08.025. 9. Cinti F., Moffa S., Impronta F. et al. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: Evidence to date. Drug Des Devel Ther. 2017; 11: 2905–19. https://dx.doi.org/10.2147/DDDT.S114932. 10. Inoue T., Takemura M., Fushimi N. et al. Mizagliflozin, a novel selective SGLT1 inhibitor, exhibits potential in the amelioration of chronic constipation. Eur J Pharmacol. 2017; 806: 25–31. https://dx.doi.org/10.1016/j.ejphar.2017.04.010. 11. Bays H.E., Kozlovski P., Shao Q. et al. Licogliflozin, a novel SGLT1 and 2 inhibitor: Body weight effects in a randomized trial in adults with overweight or obesity. Obesity (Silver Spring). 2020; 28(5): 870–81. https://dx.doi.org/10.1002/oby.22764. 12. Yang Y.S., Min K.W., Park S.O. et al. Efficacy and safety of monotherapy with enavogliflozin in Korean patients with type 2 diabetes mellitus: Results of a 12-week, multicentre, randomized, double-blind, placebo-controlled, phase 2 trial. Diabetes Obes Metab. 2023; 25(8): 2096–104. https://dx.doi.org/10.1111/dom.15080. 13. DrugBank. URL: https://go.drugbank.com/ (date of access – 14.08.2023). 14. European Medicines Agency (EMA). Jardiance 25 mg film-coated tablets. Summary of product characteristics. URL: https://www.ema. europa.eu/en/documents/product-information/jardiance-epar-product-information_en.pdf (date of access – 14.08.2023). 15. European Medicines Agency (EMA). Invokana 100 mg film-coated tablets. Summary of product characteristics. URL: https://www.ema.europa.eu/en/documents/product-information/invokana-epar-product-information_en.pdf (date of access – 14.08.2023). 16. European Medicines Agency (EMA). Steglatro 15 mg film-coated tablets. Summary of product characteristics. URL: https://www.ema.europa.eu/en/documents/product-information/steglatro-epar-product-information_en.pdf (date of access – 14.08.2023). 17. Oku A., Ueta K., Arakawa K. et al. T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes. 1999; 48(9): 1794–800. https://dx.doi.org/10.2337/diabetes.48.9.1794. 18. European Medicines Agency (EMA). Forxiga EPAR. URL: https://www.ema.europa.eu/en/medicines/human/EPAR/forxiga (date of access – 14.08.2023). 19. U.S. Food and Drug Administration. Drug approval package: Farxiga (dapagliflozin) tablets NDA #202293. URL: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/202293Orig1s000TOC.cfm (date of access – 14.08.2023). 20. U.S. Food and Drug Administration (FDA). Drug approval package: Invokana (canagliflozin) tablets NDA #204042. URL: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204042Orig1s000TOC.cfm (date of access – 14.08.2023). 21. European Medicines Agency (EMA). Invokana EPAR. URL: https://www.ema.europa.eu/en/medicines/human/EPAR/invokana (date of access – 14.08.2023). 22. U.S. Food and Drug Administration (FDA). FDA approves Jardiance to treat type 2 diabetes (Press release). URL: https://wayback.archive-it.org/7993/20161022200046/http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ ucm407637.htm (date of access – 14.08.2023). 23. Jardiance EPAR. European Medicines Agency (EMA). URL: https://www.ema.europa.eu/en/medicines/human/EPAR/jardiance (date of access – 14.08.2023). 24. Lago R.M., Singh P.P., Nesto R.W. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: A meta-analysis of randomised clinical trials. Lancet. 2007; 370(9593): 1129–36. https://dx.doi.org/10.1016/S0140-6736(07)61514-1. 25. Pantalone K.M., Kattan M.W., Yu C. et al. The risk of developing coronary artery disease or congestive heart failure, and overall mortality, in type 2 diabetic patients receiving rosiglitazone, pioglitazone, metformin, or sulfonylureas: A retrospective analysis. Acta Diabetol. 2009; 46(2): 145–54. https://dx.doi.org/10.1007/s00592-008-0090-3. 26. Tzoulaki I., Molokhia M., Curcin V. et al. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: Retrospective cohort study using UK general practice research database. BMJ. 2009; 339: b4731. https://dx.doi.org/10.1136/bmj.b4731. 27. Scirica B.M., Braunwald E., Raz I. et al.; SAVOR-TIMI 53 Steering Committee and Investigators. Heart failure, saxagliptin, and diabetes mellitus: Observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014; 130(18): 1579–88. https://dx.doi.org/10.1161/CIRCULATIONAHA.114.010389. 28. Gilbert R.E., Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet. 2015; 385(9982): 2107–17. https://dx.doi.org/10.1016/S0140-6736(14)61402-1. 29. Guidance for industry: Diabetes mellitus evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. U.S. Department of Health and Human Services; Food and Drug Administration; Center for Drug Evaluation and Research (CDER). December 2008. URL: https://www.federalregister.gov/documents/2008/12/19/E8-30086/guidance-for-industry-on-diabetes- mellitus-evaluating-cardiovascular-risk-in-new-antidiabetic (date of access – 14.08.2023). 30. Zinman B., Wanner C., Lachin J.M. et al.; EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373(22): 2117–28. https://dx.doi.org/10.1056/NEJMoa1504720. 31. Wanner C., Inzucchi S.E., Lachin J.M. et al.; EMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016; 375(4): 323–34. https://dx.doi.org/10.1056/NEJMoa1515920. 32. Neal B., Perkovic V., Mahaffey K.W. et al.; CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377(21): 644–57. https://dx.doi.org/10.1056/NEJMoa1611925. 33. Perkovic V., Jardine M.J., Neal B. et sl.; CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019; 380(24): 2295–306. https://dx.doi.org/10.1056/NEJMoa181174. 34. Wiviott S., Raz I., Bonaca M.P. et al.; DECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380(4): 347–57. https://dx.doi.org/10.1056/NEJMoa1812389. 35. Bhatt D.L., Szarek M., Steg P.G. et al.; SOLOIST-WHF Trial Investigators. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021; 384(2): 117–28. https://dx.doi.org/10.1056/NEJMoa2030183. 36. Bhatt DL, Szarek M, Pitt B. et al.; SCORED Investigators. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021; 384(2): 129–39. https://dx.doi.org/10.1056/NEJMoa2030186. 37. Куликов А.Н., Оковитый С.В., Ивкин Д.Ю. с соавт. Эффекты эмпаглифлозина при экспериментальной модели хронической сердечной недостаточности у крыс с нормогликемией. Журнал сердечная недостаточность. 2016; 17(6): 454–460 38. Byrne N.J., Parajuli N., Levasseur J.L. et al. Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Transl Sci. 2017; 2(4): 347–54. https://dx.doi.org/10.1016/j.jacbts.2017.07.003. 39. Lim V.G., Bell R.M., Arjun S. et al. SGLT2 inhibitor, canagliflozin, attenuates myocardial infarction in the diabetic and nondiabetic heart. JACC Basic Transl Sci. 2019; 4(1): 15–26. https://dx.doi.org/10.1016/j.jacbts.2018.10.002. 40. Yurista S.R., Sillje H.H.W., Oberdor-Maass S.U. et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail. 2019; 21(7): 862–73. https://dx.doi.org/10.1002/ejhf.1473 41. Zhang Y., Nakano D., Guan Y. et al. A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor-dependent pathway after renal injury in mice. Kidney Int. 2018; 94(3): 524–35. https://dx.doi.org/10.1016/j.kint.2018.05.002. 42. Cassis P., Locatelli M., Cerullo D. et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight. 2018; 3(15): e98720. https://dx.doi.org/10.1172/jci.insight.98720 43. Yamato M., Kato N., Kakino A. et al. Low dose of sodium-glucose transporter 2 inhibitor ipragliflozin attenuated renal dysfunction and interstitial fibrosis in adenine-induced chronic kidney disease in mice without diabetes. Metabol Open. 2020; 7: 100049. https://dx.doi.org/10.1016/j.metop.2020 44. McMurray J.J.V., Solomon S.D., Inzucchi S.E. et al.; DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381(21): 1995–2008. https://dx.doi.org/10.1056/NEJMoa1911303. 45. Packer M., Anker S.D., Butler J. et al.; EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383(15): 1413–24. https://dx.doi.org/10.1056/NEJMoa2022190. 46. Anker S.D., Butler J., Filippatos G., Ferreira J.P. et al.; EMPEROR-Preserved Trial Investigators. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021; 385(16): 1451–61. https://dx.doi.org/10.1056/NEJMoa2107038. 47. Solomon S.D., McMurray J.J.V., Claggett B. et al.; DELIVER Trial Committees and Investigators. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022; 387(12): 1089–98. https://dx.doi.org/10.1056/NEJMoa2206286. 48. Heerspink H.J., Stefansson B.V., Correa-Rotter R. et al.; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020; 383(15): 1436–46. https://dx.doi.org/10.1056/NEJMoa2024816. 49. The EMPA-KIDNEY Collaborative Group; Herrington W.G., Staplin N., Wanner C. et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2023; 388(2): 117–27. https://dx.doi.org/10.1056/NEJMoa2204233. 50. Sumida Y., Yoneda M., Toyoda H. et al.; Japan Study Group Of NAFLD JSG-NAFLD. Common drug pipelines for the treatment of diabetic nephropathy and hepatopathy: Can we kill two birds with one stone? Int J Mol Sci. 2020; 21(14): 4939. https://dx.doi.org/10.3390/ijms21144939. 51. Rieg J.A.D., Rieg T. What does SGLT1 inhibition add: Prospects for dual inhibition. Diabetes Obes Metab. 2019; 21(Suppl 2): 43–52. https://dx.doi.org/10.1111/dom.13630. 52. Sharma D., Verma S., Vaidya S. et al. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother. 2018; 108: 952–62. https://dx.doi.org/10.1016/j.biopha.2018.08.088. 53. Wang X.C., Gusdon A.M., Liu H., Qu S. Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation. World J Gastroenterol. 2014; 20(40): 14821–30. https://dx.doi.org/10.3748/wjg.v20.i40.14821. 54. Samson S.L., Sathyanarayana P., Jogi M. et al. Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial. Diabetologia. 2011; 54(12): 3093–100. https://dx.doi.org/10.1007/s00125-011-2317-z. 55. Karra E., Chandarana K., Batterham R.L. The role of peptide YY in appetite regulation and obesity. J Physiol. 2009; 587(Pt 1): 19–25. https://dx.doi.org/10.1113/jphysiol.2008.164269. 56. Aso Y., Kato K., Sakurai S. et al. Impact of dapagliflozin, an SGLT2 inhibitor, on serum levels of soluble dipeptidyl peptidase-4 in patients with type 2 diabetes and non-alcoholic fatty liver disease. Int J Clin Pract. 2019; 73(5): e13335. https://dx.doi.org/10.1111/ijcp.13335. 57. Sumida Y., Yoneda M., Tokushige K. et al. Hepatoprotective effect of SGLT2 inhibitor on nonalcoholic fatty liver disease. Diab Res Open Access. 2020; 2(S1): 17–25. https://dx.doi.org/10.36502/2020/droa.6159. 58. Mistry S., Eschler D.C. Euglycemic diabetic ketoacidosis caused by SGLT2 inhibitors and a ketogenic diet: A case series and review of literature. AACE Clin Case Rep. 2021; 7(1): 17–19. https://dx.doi.org/10.1016/j.aace.2020.11.009. 59. Packer M. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis. Diabetes Obes Metab. 2018; 20(6): 1361–66. https://dx.doi.org/10.1111/dom.13229. 60. Joshi S.S., Singh T., Newby D.E., Singh J. Sodium-glucose co-transporter 2 inhibitor therapy: Mechanisms of action in heart failure. Heart. 2021; 107(13): 1032–38. https://dx.doi.org/10.1136/heartjnl-2020-318060. 61. Cheng F., Su S., Zhu X. et al. Leptin promotes methionine adenosyltransferase 2A expression in hepatic stellate cells by the downregulation of E2F-4 via the β-catenin pathway. FASEB J. 2020; 34(4): 5578–89. https://dx.doi.org/10.1096/fj.201903021RR. 62. Wu P., Wen W., Li J et al. Systematic review and meta-analysis of randomized controlled trials on the effect of SGLT2 inhibitor on blood leptin and adiponectin level in patients with type 2 diabetes. Horm Metab Res. 2019; 51(8): 487–94. https://dx.doi.org/10.1055/a-0958-2441. 63. Hsiang J.C., Wong V.W.S. SGLT2 Inhibitors in liver patients. Clin Gastroenterol Hepatol. 2020; 18(10): 2168–72.e2. https://dx.doi.org/10.1016/j.cgh.2020.05.021. 64. PubMed. URL: https://pubmed.ncbi.nlm.nih.gov/ (date of access – 14.08.2023). 65. ClinicalTrials.gov. URL: https://www.clinicaltrials.gov/ (date of access – 14.08.2023). 66. EudraCT (European Union Drug Regulating Authorities Clinical Trials Database). URL: https://eudract.ema.europa.eu/ (date of access – 14.08.2023). 67. ClinLine. URL: https://clinline.ru/ (date of access – 14.08.2023). 68. Arase Y., Shiraishi K., Anzai K. et al. Effect of sodium glucose co-transporter 2 inhibitors on liver fat mass and body composition in patients with nonalcoholic fatty liver disease and type 2 diabetes mellitus. Clin Drug Investig. 2019; 39(7): 631–41. https://dx.doi.org/10.1007/s40261-019-00785-6. 69. Eriksson J.W., Lundkvist P., Jansson P.A. et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: A double-blind randomised placebo-controlled study. Diabetologia. 2018; 61(9): 1923–34. https://dx.doi.org/10.1007/s00125-018-4675-2. 70. Choi D.H., Jung C.H., Mok J.O. et al. Effect of dapagliflozin on alanine aminotransferase improvement in type 2 diabetes mellitus with non-alcoholic fatty liver disease. Endocrinol Metab (Seoul). 2018; 33(3): 387–94. https://dx.doi.org/10.3803/EnM.2018.33.3.387. 71. Kinoshita T., Shimoda M., Nakashima K. et al. Comparison of the effects of three kinds of glucose-lowering drugs on non-alcoholic fatty liver disease in patients with type 2 diabetes: A randomized, open-label, three-arm, active control study. J Diabetes Investig. 2020; 11(6): 1612–22. https://dx.doi.org/10.1111/jdi.13279. 72. Cho K.Y., Nakamura A., Omori K. et al. Favorable effect of sodium-glucose cotransporter 2 inhibitor, dapagliflozin, on non-alcoholic fatty liver disease compared with pioglitazone. J Diabetes Investig. 2021; 12(7): 1272–77. https://dx.doi.org/10.1111/jdi.13457. 73. Gastaldelli A., Repetto E., Guja C. et al. Exenatide and dapagliflozin combination improves markers of liver steatosis and fibrosis in patients with type 2 diabetes. Diabetes Obes Metab. 2020; 22(3): 393–403. https://dx.doi.org/10.1111/dom.13907. 74. Koutsovasilis A., Sotiropoulos A., Peppas T. et al. Effectiveness of dapagliflozin in nonalcoholic fatty liver disease in type 2 diabetes patients compared to sitagliptin and pioglitazone. Proceedings of the EASD Meeting-2017. 2017; (1): 12. 75. Shimizu M., Suzuki K., Kato K. et al. Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes Metab. 2019; 21(2): 285–92. https://dx.doi.org/10.1111/dom.13520. 76. Ribeiro Dos Santos L., Baer Filho R. Treatment of nonalcoholic fatty liver disease with dapagliflozin in non-diabetic patients. Metabol Open. 2020; 5: 100028. https://dx.doi.org/10.1016/j.metop.2020.100028. 77. Takase T., Nakamura A., Miyoshi H. et al. Amelioration of fatty liver index in patients with type 2 diabetes on ipragliflozin: an association with glucose-lowering effects. Endocr J. 2017; 64(3): 363–67. https://dx.doi.org/10.1507/endocrj.EJ16-0295. 78. Seko Y., Sumida Y., Tanaka S. et al. Effect of sodium glucose cotransporter 2 inhibitor on liver function tests in Japanese patients with non-alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol Res. 2017; 47(10): 1072–78. https://dx.doi.org/10.1111/hepr.12834. 79. Ito D., Shimizu S., Inoue K. et al. Comparison of ipragliflozin and pioglitazone effects on nonalcoholic fatty liver disease in patients with type 2 diabetes: A randomized, 24-week, open-label, active-controlled trial. Diabetes Care. 2017; 40(10): 1364–72. https://dx.doi.org/10.2337/dc17-0518. 80. Han E., Lee Y.H., Lee B.W. et al. Ipragliflozin additively ameliorates non-alcoholic fatty liver disease in patients with type 2 diabetes controlled with metformin and pioglitazone: A 24-week randomized controlled trial. J Clin Med. 2020; 9(1): 259. https://dx.doi.org/10.3390/jcm9010259. 81. Takahashi H., Kessoku T., Kawanaka M. et al. Ipragliflozin improves the hepatic outcomes of patients with diabetes with NAFLD. Hepatol Commun. 2022; 6(1): 120–32. https://dx.doi.org/10.1002/hep4.1696. 82. Inoue M., Hayashi A., Taguchi T. et al. Effects of canagliflozin on body composition and hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease. J Diabetes Investig. 2019; 10(4): 1004–11. https://dx.doi.org/10.1111/jdi.12980. 83. Cusi K., Bril F., Barb D. et al. Effect of canagliflozin treatment on hepatic triglyceride content and glucose metabolism in patients with type 2 diabetes. Diabetes Obes Metab. 2019; 21(4): 812–21. https://dx.doi.org/10.1111/dom.13584. 84. Itani T., Ishihara T. Efficacy of canagliflozin against nonalcoholic fatty liver disease: A prospective cohort study. Obes Sci Pract. 2018; 4(5): 477–82. https://dx.doi.org/10.1002/osp4.294. 85. Shibuya T., Fushimi N., Kawai M. et al. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective randomized controlled pilot study. Diabetes Obes Metab. 2018; 20(2): 438–42. https://dx.doi.org/10.1111/dom.13061. 86. Sumida Y., Murotani K., Saito M. et al. Effect of luseogliflozin on hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective, single-arm trial (LEAD trial). Hepatol Res. 2019; 49(1): 64–71. https://dx.doi.org/10.1111/hepr.13236. 87. Wilkison B., Cheatham B., Walker S. et al. Remogliflozin etabonate reduces FIB-4 and NAFLD Fibrosis Scores in type 2 diabetic subjects. Hepatology. 2016; (Suppl 1): 548A. 88. Takeshita Y., Honda M., Harada K. et al. Comparison of tofogliflozin and glimepiride effects on nonalcoholic fatty liver disease in participants with type 2 diabetes: A randomized, 48-week, open-label, active-controlled trial. Diabetes Care. 2022; 45(9): 2064–75. https://dx.doi.org/10.2337/dc21-2049. 89. Yoneda M., Honda Y., Ogawa Y. et al. Comparing the effects of tofogliflozin and pioglitazone in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus (ToPiND study): A randomized prospective open-label controlled trial. BMJ Open Diabetes Res Care. 2021; 9(1): e001990. https://dx.doi.org/10.1136/bmjdrc-2020-001990. 90. Yoneda M., Kobayashi T., Honda Y. et al. Combination of tofogliflozin and pioglitazone for NAFLD: Extension to the ToPiND randomized controlled trial. Hepatol Commun. 2022; 6(9): 2273–85. https://dx.doi.org/10.1002/hep4.1993. 91. Sattar N., Fitchett D., Hantel S. et al. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: Results from randomised trials including the EMPA-REG OUTCOME® trial. Diabetologia. 2018; 61(10): 2155–63. https://dx.doi.org/10.1007/s00125-018-4702-3. 92. Shao S.C., Kuo L.T., Chien R.N. et al. SGLT2 inhibitors in patients with type 2 diabetes with non-alcoholic fatty liver diseases: an umbrella review of systematic reviews. BMJ Open Diabetes Res Care. 2020; 8(2): e001956. https://dx.doi.org/10.1136/bmjdrc-2020-001956. 93. Kuchay M.S., Krishan S., Mishra S.K. et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: A randomized controlled trial (E-LIFT trial). Diabetes Care. 2018; 41(8): 1801–8. https://dx.doi.org/10.2337/dc18-0165. 94. Kahl S., Gancheva S., Straßburger K. et al. Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes: A randomized, double-blind, phase 4, placebo-controlled trial. Diabetes Care. 2020; 43(2): 298–305. https://dx.doi.org/10.2337/dc19-0641. 95. Lai L.L., Vethakkan S.R., Nik Mustapha N.R. et al. Empagliflozin for the treatment of nonalcoholic steatohepatitis in patients with type 2 diabetes mellitus. Dig Dis Sci. 2020; 65(2): 623–31. https://dx.doi.org/10.1007/s10620-019-5477-1. 96. Chehrehgosha H., Sohrabi M.R., Ismail-Beigi F. et al. Empagliflozin improves liver steatosis and fibrosis in patients with non-alcoholic fatty liver disease and type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. Diabetes Ther. 2021; 12(3): 843–61. https://dx.doi.org/10.1007/s13300-021-01011-3. 97. Taheri H., Malek M., Ismail-Beigi F. et al. Effect of empagliflozin on liver steatosis and fibrosis in patients with non-alcoholic fatty liver disease without diabetes: A randomized, double-blind, placebo-controlled trial. Adv Ther. 2020; 37(11): 4697–708. https://dx.doi.org/10.1007/s12325-020-01498-5. 98. Gallo S., Calle R.A., Terra S.G. et al. Effects of ertugliflozin on liver enzymes in patients with type 2 diabetes: A post-hoc pooled analysis of phase 3 trials. Diabetes Ther. 2020; 11(8):1849–60. https://dx.doi.org/10.1007/s13300-020-00867-1. 99. Harrison S.A., Manghi F.P., Smith W.B. et al. Licogliflozin for nonalcoholic steatohepatitis: A randomized, double-blind, placebo- controlled, phase 2a study. Nat Med. 2022; 28(7):1432–38. https://dx.doi.org/10.1038/s41591-022-01861-9.
Вероника Александровна Приходько, ассистент кафедры фармакологии и клинической фармакологии ФГБОУ ВО «Санкт-Петербургский государственный химико-фармацевтический университет» Минздрава России. Адрес: 197022, г. Санкт-Петербург, ул. Профессора Попова, д. 14, лит. А.
E-mail: veronika.prihodko@pharminnotech.com ORCID: https://orcid.org/0000-0002-4690-1811
Сергей Владимирович Оковитый, д.м.н., профессор, зав. кафедрой фармакологии и клинической фармакологии ФГБОУ ВО «Санкт-Петербургский государственный химико-фармацевтический университет» Минздрава России. Адрес: 197022, г. Санкт-Петербург, ул. Профессора Попова, д. 14, лит. А.
E-mail: sergey.okovity@pharminnotech.com ORCID: https://orcid.org/0000-0003-4294-5531
Александр Николаевич Куликов, д.м.н., профессор, зав. кафедрой пропедевтики внутренних болезней ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Минздрава России. Адрес: 197022, г. Санкт-Петербург, ул. Льва Толстого, д. 6–8.
E-mail: ankulikov2005@yandex.ru
ORCID: https://orcid.org/0000-0002-4544-2967