Психоневрологические нарушения при неалкогольной жировой болезни печени


DOI: https://dx.doi.org/10.18565/therapy.2022.7.64-77

В.А. Приходько, С.В. Оковитый

1) ФГБОУ ВО «Санкт-Петербургский государственный химико-фармацевтический университет» Минздрава России; 2) ФГБУН «Институт мозга человека им. Н.П. Бехтеревой» Российской академии наук, г. Санкт-Петербург
Аннотация. Неалкогольная жировая болезнь печени (НАЖБП) характеризуется неуклонно растущей распространенностью, склонностью к прогрессированию и наличием широкого спектра осложнений и сопутствующих патологий. Несмотря на частую встречаемость и существенное влияние на качество жизни пациентов, психоневрологические расстройства, ассоциированные с НАЖБП, в частности, на прецирротических стадиях, остаются сравнительно мало изученными. В настоящем обзоре рассмотрены особенности патогенеза и основные виды расстройств центральной и периферической нервной системы, сопровождающих различные стадии НАЖБП.

Литература


1. Лазебник Л.Б., Голованова Е.В., Туркина С.В. с соавт. Неалкогольная жировая болезнь печени у взрослых: клиника, диагностика, лечение. Рекомендации для терапевтов, третья версия. Экспериментальная и клиническая гастроэнтерология. 2021; 1: 4–52.


2. Younossi Z.M., Henry L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular carcinoma. JHEP Rep. 2021;3(4): 100305. https://dx.doi.org/10.1016/j.jhepr.2021.100305.


3. Eslam M., Sanyal A.J., George J. et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020; 158(7): 1999–2014.e1. https://dx.doi.org/10.1053/j.gastro.2019.11.312.


4. Mikkelsen A.C.D., Kjergaard K., Mookerjee R.P. et al. Non-alcoholic fatty liver disease: Also a disease of the brain? A systematic review of the preclinical evidence. Neurochem Res. 2022. https://dx.doi.org/10.1007/s11064-022-03551-x. Online ahead of print.


5. Moretti R., Caruso P., Gazzin S. Non-alcoholic fatty liver disease and neurological defects. Ann Hepatol. 2019; 18(4): 563–70.https://dx.doi.org/10.1016/j.aohep.2019.04.007.


6. Lombardi R., Fargion S., Fracanzani A.L. Brain involvement in non-alcoholic fatty liver disease (NAFLD): A systematic review. Dig Liver Dis. 2019; 51(9): 1214–22. https://dx.doi.org/10.1016/j.dld.2019.05.015.


7. Лазебник Л.Б., Голованова Е.В., Алексеенко С.А. с соавт. Российский консенсус «Гипераммониемии у взрослых». Экспериментальная и клиническая гастроэнтерология. 2019; 12: 4–23.


8. Berg J.M., Tymoczko J.L., Stryer L. Biochemistry. 5th edition. NY: W.H. Freeman. 2002; 1100 pp. ISBN-10: 0716746840; ISBN-13: 978-0716746843.


9. Sepehrinezhad A., Zarifkar A., Namvar G. et al. Astrocyte swelling in hepatic encephalopathy: Molecular perspective of cytotoxic edema. Metab Brain Dis. 2020; 35(4): 559–78. https://dx.doi.org/10.1007/s11011-020-00549-8.


10. Rose J., Brian C., Pappa A. et al. Mitochondrial metabolism in astrocytes regulates brain bioenergetics, neurotransmission and redox balance. Front Neurosci. 2020; 14: 536682. https://dx.doi.org/10.3389/fnins.2020.536682.


11. Soria L.R., Brunetti-Pierri N. Targeting autophagy for therapy of hyperammonemia. Autophagy. 2018; 14(7): 1273–75.https://dx.doi.org/10.1080/15548627.2018.1444312.


12. Quinn W.J.III, Wan M., Shewale S.V et al. mTORC1 stimulates phosphatidylcholine synthesis to promote triglyceride secretion. J Clin Invest. 2017; 127(11): 4207–15. https://dx.doi.org/10.1172/JCI96036.


13. Selen E.S., Wolfgang M.J. mTORC1 activation is not sufficient to suppress hepatic PPAR α signaling or ketogenesis. J Biol Chem. 2021; 297(1): 100884. https://dx.doi.org/10.1016/j.jbc.2021.100884.


14. Blanchard P.-G., Festuccia W.T., Houde V.P. et al. Major involvement of mTOR in the PPARγ -induced stimulation of adipose tissue lipid uptake and fat accretion. 2012;53:1117–25. https://dx.doi.org/10.1194/jlr.M021485.


15. Dadsetan S., Kukolj E., Bak L.K. et al. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: Effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures. J Cereb Blood Flow Metab. 2013; 33(8): 1235–41.https://dx.doi.org/10.1038/jcbfm.2013.73.


16. Bosoi C.R., Rose C.F. Elevated cerebral lactate : Implications in the pathogenesis of hepatic encephalopathy. Metab Brain Dis. 2014; 29(4): 919–25. https://dx.doi.org/10.1007/s11011-014-9573-9.


17. Oria M., Jalan R. Brain lactate in hepatic encephalopathy: Friend or foe? J Hepatol. 2014; 60(3): 476–77.https://dx.doi.org/10.1016/j.jhep.2013.11.029.


18. Sorensen M., Walls A.B., Dam G. et al. Low cerebral energy metabolism in hepatic encephalopathy reflects low neuronal energy demand. Role of ammonia-induced increased GABAergic tone. Anal Biochem. 2022; 114766.https://dx.doi.org/10.1016/j.ab.2022.114766. Online ahead of print.


19. Rama Rao K.V., Norenberg M.D. Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy. Neurochem Int. 2012; 60(7): 697–706. https://dx.doi.org/10.1016/j.neuint.2011.09.007.


20. Albrecht J., Zielinska M., Norenberg M.D. Glutamine as a mediator of ammonia neurotoxicity: A critical appraisal. Biochem Pharmacol. 2010; 80(9): 1303–8. https://dx.doi.org/10.1016/j.bcp.2010.07.024.


21. Zielinska M., Popek M., Albrecht A. Roles of changes in active glutamine transport in brain edema development during hepatic encephalopathy: An emerging concept. Neurochem Res. 2014; 39(3): 599–604. https://dx.doi.org/10.1007/s11064-013-1141-x.


22. Holecek M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab Brain Dis. 2014; 29(1): 9–17. https://dx.doi.org/10.1007/s11011-013-9428-9.


23. Traube F.R., Ozdemir D., Sahin H. et al. Redirected nuclear glutamate dehydrogenase supplies Tet3 with α-ketoglutarate in neurons. Nat Commun. 2021; 12(1): 4100. https://dx.doi.org/10.1038/s41467-021-24353-9.


24. Oja S.S., Saransaari P., Korpi E.R. Neurotoxicity of ammonia. Neurochem Res. 2017; 42(3): 713–20.https://dx.doi.org/10.1007/s11064-016-2014-x.


25. Limon I.D., Angelo-Cruz I.A., Sanchez-Abdon L., Patricio-Martinez A. Disturbance of the glutamate-glutamine cycle, secondary to hepatic damage, compromises memory function. Front Neurosci. 2021; 15: 578922. https://dx.doi.org/10.3389/fnins.2021.578922.


26. Baraldi M., Avallone R., Corsi L. et al. Natural endogenous ligands for benzodiazepine receptors in hepatic encephalopathy. Metab Brain Dis. 2009; 24(1): 81–93. https://dx.doi.org/10.1007/s11011-008-9111-8.


27. Подымова С.Д., Винницкая Е.В., Хайменова Т.Ю. Печеночная энцефалопатия : современные аспекты диагностики и лечения. Экспериментальная и клиническая гастроэнтерология. 2021; 7: 90–98.


28. Gorg B., Foster N., Reinehr R. et al. Benzodiazepine-induced protein tyrosine nitration in rat astrocytes. Hepatology. 2003; 37(2): 334–42. https://dx.doi.org/10.1053/jhep.2003.50061.


29. Mladenovic D., Stanojlovic O., Radosavljevic T. The role of neurosteroids in the pathogenesis of hepatic encephalopathy. Medicinski Podmladak. 2016; 67(1): 35–40. https://dx.doi.org/10.5937/medpodm1601035M.


30. Izumi Y., Svrakic N., O’Dell K., Zorumski C.F. Ammonia inhibits long-term potentiation via neurosteroid synthesis in hippocampal pyramidal neurons. Neuroscience. 2013; 233: 166–73. https://dx.doi.org/10.1016/j.neuroscience.2012.12.035.


31. Kumashiro N., Erion D.M., Zhang D. et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A. 2011; 108(39): 16381–5. https://dx.doi.org/10.1073/pnas.1113359108.


32. Doust Y.V, Ziebell J.M. Insulin resistance in the brain: Evidence supporting a role for inflammation, reactive microglia, and the impact of biological sex. Neuroendocrinology. 2022. https://dx.doi.org/10.1159/000524059. Online ahead of print.


33. Ding S., Zhuge W., Yang J. et al. Insulin resistance disrupts the interaction between AKT and the NMDA receptor and the inactivation of the CaMK/CREB pathway in minimal hepatic encephalopathy. Toxicol Sci. 2017; 159(2): 290–306.https://dx.doi.org/10.1093/toxsci/kfx093.


34. Kleinridders A., Cai W., Cappellucci L. et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci U S A. 2015; 112(11): 3463–68. https://dx.doi.org/10.1073/pnas.1500877112.


35. Higarza S.G., Arboleya S., Gueimonde M. et al. Neurobehavioral dysfunction in nonalcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits. PLOS One. 2019; 14(9): e0223019.https://dx.doi.org/10.1371/journal.pone.0223019.


36. Ferro D., Baratta F., Pastori D. et al. New Insights into the pathogenesis of non-alcoholic and oxidative stress. Nutrients. 2020; 12(9): 2762. https://dx.doi.org/10.3390/nu12092762.


37. Vilstrup H., Amodio P., Bajaj J. et al. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology. 2014; 60(2): 715–35. https://dx.doi.org/10.1002/hep.27210.


38. Лопаткина Т.Н., Байкова Т.А. Минимальная печеночная энцефалопатия при циррозе печени и раннее назначение Дюфалака. Фарматека. 2012; 2: 66–70.


39. Casadaban L.C., Parvinian A., Minocha J. et al. Clearing the confusion over hepatic encephalopathy after TIPS creation: Incidence, Prognostic factors, and clinical outcomes. Dig Dis Sci. 2015; 60(4): 1059–66. https://dx.doi.org/10.1007/s10620-014-3391-0.


40. Schindler P., Heinzow H., Trebicka J., Wildgruber M. Shunt-induced hepatic encephalopathy in TIPS: Current approaches and clinical challenges. J Clin Med. 2020; 9(11): 3784. https://dx.doi.org/10.3390/jcm9113784.


41. Назыров Ф.Г., Девятов А.В., Бабаджанов А.Х., Раимов С.А. Дистальный спленоренальный анастомоз у больных разных возрастных групп. Анналы хирургической гепатологии. 2015; 20(1): 24–28.


42. Павлов Ч.С., Дамулин И.В., Ивашкин В.Т. Печеночная энцефалопатия: патогенез, клиника, диагностика, терапия. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2016; 26(1): 44–53.


43. Burgos A., Bermejo P.E., Calleja J.L. et al. Acquired chronic hepatocerebral degeneration due to cirrhosis from non-alcoholic steatohepatitis. Rev Esp Enferm Dig. 2009; 101(11): 806–11. https://dx.doi.org/10.4321/s1130-01082009001100009.


44. Полещук В.В., Яковенко Е.В., Федотова Е.Ю., Иллариошкин С.Н. Приобретенная невильсоновская гепатоцеребральная дегенерация. Нервные болезни. 2019; 1: 34–39.


45. Balzano T., Forteza J., Borreda I. et al. Histological features of cerebellar neuropathology in patients with alcoholic and nonalcoholic steatohepatitis. J Neuropathol Exp Neurol. 2018; 77(9): 837–45. https://dx.doi.org/10.1093/jnen/nly061.


46. Balzano T., Forteza J., Molina P. et al. The cerebellum of patients with steatohepatitis shows lymphocyte infiltration, microglial activation and loss of purkinje and granular neurons. Sci Rep. 2018; 8(1): 3004. https://dx.doi.org/10.1038/s41598-018-21399-6.


47. Farmer B.C., Walsh A.E., Kluemper J.C. et al. Lipid droplets in neurodegenerative disorders. Front Neurosci. 2020; 14: 742.https://dx.doi.org/10.3389/fnins.2020.00742.


48. Felipo V., Urios A., Gimenez-Garzo C. et al. Non invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests. World J Gastroenterol. 2014; 20(33): 11815–25.https://dx.doi.org/10.3748/wjg.v20.i33.11815.


49. Cheon S.Y., Song J. Novel insights into non-alcoholic fatty liver disease and dementia : insulin resistance, hyperammonemia, gut dysbiosis, vascular impairment, and inflammation. Cell Biosci. 2022; 12(1): 99. https://dx.doi.org/10.1186/s13578-022-00836-0.


50. Agarwal A.N., Mais D.D. Sensitivity and specificity of Alzheimer type ii astrocytes in hepatic encephalopathy. Arch Pathol Lab Med. 2019; 143(10): 1256–58. https://dx.doi.org/10.5858/arpa.2018-0455-OA.


51. Donath H., Woelke S., Theis M. et al. Progressive liver disease in patients with ataxia telangiectasia. Front Pediatr. 2019; 7: 458.https://dx.doi.org/10.3389/fped.2019.00458.


52. Viswanathan P., Sharma Y., Maisuradze L. et al. Ataxia telangiectasia mutated pathway disruption affects hepatic DNA and tissue damage in nonalcoholic fatty liver disease. Exp Mol Pathol. 2021; 113: 104369. https://dx.doi.org/10.1016/j.yexmp.2020.104369.


53. Pizzamiglio L., Focchi E., Antonucci F. ATM protein kinase: Old and new implications in neuronal pathways and brain circuitry. Cells. 2020; 9(9): 1969. https://dx.doi.org/10.3390/cells9091969.


54. Daugherity E.K., Balmus G., Al Saei A. et al. The DNA damage checkpoint protein ATM promotes hepatocellular apoptosis and fibrosis in a mouse model of non-alcoholic fatty liver disease. Cell Cycle. 2012; 11(10): 1918–28. https://dx.doi.org/10.4161/cc.20259.


55. Estrada L.D., Ahumada P., Cabrera D., Arab J.P. Liver dysfunction as a novel player in Alzheimer’s progression: Looking outside the brain. Front Aging Neurosci. 2019; 11: 174. https://dx.doi.org/10.3389/fnagi.2019.00174.


56. Kim D.-G., Krenz A., Toussaint L.E. et al. Non-alcoholic fatty liver disease induces signs of Alzheimer’s disease (AD) in wildtype mice and accelerates pathological signs of AD in an AD model. J Neuroinflammation. 2016; 13: 1.https://dx.doi.org/10.1186/s12974-015-0467-5.


57. Karbalaei R., Allahyari M., Rezaei-Tavirani M. et al. Protein-protein interaction analysis of Alzheimer's disease and NAFLD based on systems biology methods unhide common ancestor pathways. Gastroenter Hepatol Bed Bench. 2018; 11(1): 27–33.


58. Petta S., Tuttolomondo A., Gagliardo C. et al. The presence of white matter lesions is associated with the fibrosis severity of nonalcoholic fatty liver disease. Medicine (Baltimore). 2016; 95(16): e3446. https://dx.doi.org/10.1097/MD.0000000000003446.


59. Moghekar A., Kraut M., Elkins W. et al. Cerebral white matter disease is associated with Alzheimer pathology in a prospective cohort. Alzheimers Dement. 2012; 8(5 Suppl): S71–77. https://dx.doi.org/10.1016/j.jalz.2012.04.006.


60. Shang Y., Nasr P., Ekstedt M. et al. Non-alcoholic fatty liver disease does not increase dementia risk although histology data might improve risk prediction. JHEP Rep. 2020; 3(2): 100218. https://dx.doi.org/10.1016/j.jhepr.2020.100218.


61. Parikh N., Kamel H., Zhang C. et al. Association between liver fibrosis and incident dementia in the UK Biobank study. European Journal of Neurology. Eur J Neurol. 2022; 29(9): 2622–30. https://dx.doi.org/10.1111/ene.15437.


62. Jeong S.M., Rim H.R., Jang W. et al. Sex differences in the association between nonalcoholic fatty liver disease and Parkinson’s disease. Parkinsonism Relat Disord. 2021; 93: 19–26. https://dx.doi.org/10.1016/j.parkreldis.2021.10.030.


63. Nodera H., Takamatsu N., Muguruma N. et al. Frequent hepatic steatosis in amyotrophic lateral sclerosis: Implication for systemic involvement. Neurol Clin Neurosci. 2015; 3: 58–62. https://dx.doi.org/10.1111/ncn3.143.


64. Parekh B. A(a)LS: Ammonia-induced amyotrophic lateral sclerosis. F1000Research. 2015; 4: 119.https://dx.doi.org/10.12688/f1000research.6364.1.


65. Al-hamoudi W., Alsadoon A., Hassanian M. et al. Endothelial dysfunction in nonalcoholic steatohepatitis with low cardiac disease risk. Sci Rep. 2020; 10(1): 8825. https://dx.doi.org/10.1038/s41598-020-65835-y.


66. Минов А.Ф., Дзядзько А.М., Руммо О.О. Нарушения гемостаза при заболеваниях печени. Вестник трансплантологии и искусственных органов. 2010; 12(2): 82–91.


67. Virovic-Jukic L., Stojsavljevic-Shapeski S., Forgac J. et al. Non-alcoholic fatty liver disease – a procoagulant condition? Croat Med J. 2021; 62(1): 25–33. https://dx.doi.org/10.3325/cmj.2021.62.25.


68. Mucino-Bermejo J., Carrillo-Esper R., Uribe M., Mendez-Sanchez N. Coagulation abnormalities in the cirrhotic patient. Annals of Hepatology. 2013; 12(5): 713–24.


69. Kim Y.D., Song D., Heo J.H. et al. Relationship between cerebral microbleeds and liver stiffness determined by transient elastography. PLOS One. 2015; 10(9): e0139227. https://dx.doi.org/10.1371/journal.pone.0139227.


70. Hu J., Xu Y., He Z. et al. Increased risk of cerebrovascular accident related to non-alcoholic fatty liver disease: A meta-analysis. Oncotarget. 2018; 9(2): 2752–60. https://dx.doi.org/10.18632/oncotarget.22755.


71. Kwak M.S., Kim K.W., Seo H. et al. Non-obese fatty liver disease is associated with lacunar infarct. Liver Int. 2018; 38(7): 1292–99. https://dx.doi.org/10.1111/liv.13663.


72. Alkagiet S., Papagiannis A., Tziomalos K. Associations between nonalcoholic fatty liver disease and ischemic stroke. World J Hepatol. 2018; 10(7): 474–78. https://dx.doi.org/10.4254/wjh.v10.i7.474.


73. Xu J., Dai L., Zhang Y. et al. Severity of nonalcoholic fatty liver disease and risk of future ischemic stroke events. Stroke. 2021; 52(1): 103–10. https://dx.doi.org/10.1161/STROKEAHA.120.030433.


74. Yuan C.X., Ruan Y.T., Zeng Y.Y. et al. Liver fibrosis is associated with hemorrhagic transformation in patients with acute ischemic stroke. Front Neurol. 2020; 11: 867. https://dx.doi.org/10.3389/fneur.2020.00867.


75. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th edition. Arlington, VA: American Psychiatric Publishing. 2013; 991 pp.https://dx.doi.org/10.1176/appi.books.9780890425787. ISBN-10: 0890425558; ISBN-13: 978-0890425558.


76. Youssef N.A., Abdelmalek M.F., Binks M. et al. Associations of depression, anxiety and antidepressants with histological severity of nonalcoholic fatty liver disease. Liver Int. 2013; 33(7): 1062–70. https://dx.doi.org/10.1111/liv.12165.


77. Jung J.Y., Park S.K., Oh C.M. et al. Non-alcoholic fatty liver disease and its association with depression in Korean general population. J Korean Med Sci. 2019; 34(30): e199. https://dx.doi.org/10.3346/jkms.2019.34.e199.


78. Choi J.M., Chung G.E., Kang S.J. et al. Association between anxiety and depression and nonalcoholic fatty liver disease. Front Med (Lausanne). 2021; 7: 585618. https://dx.doi.org/10.3389/fmed.2020.585618.


79. Xiao J., Lim L.K.E., Ng C.H. et al. Is fatty liver associated with depression? A meta-analysis and systematic review on the prevalence, risk factors, and outcomes of depression and non-alcoholic fatty liver disease. Front Med (Lausanne). 2021; 8: 691696.https://dx.doi.org/10.3389/fmed.2021.691696.


80. Elwing J.E., Lustman P.J., Wang H.L., Clouse R.E. Depression, anxiety, and nonalcoholic steatohepatitis. Psychosom Med. 2006; 68(4): 563–69. https://dx.doi.org/10.1097/01.psy.0000221276.17823.df.


81. Tomeno W., Kawashima K., Yoneda M. et al. Non-alcoholic fatty liver disease comorbid with major depressive disorder: The pathological features and poor therapeutic efficacy. J Gastroenterol Hepatol. 2015; 30(6): 1009–14.https://dx.doi.org/10.1111/jgh.12897.


82. Radfor-Smith D.E., Patel P.J., Irvine K.M. et al. Depressive symptoms in non-alcoholic fatty liver disease are identified by perturbed lipid and lipoprotein metabolism. PLOS One. 2022; 17(1): e0261555. https://dx.doi.org/10.1371/journal.pone.0261555.


83. Asquith E., Bould K., Catling J., Day E. Behaviour regulation , locus of control and the role of mental health in non-alcoholic fatty liver disease. Res Sq. 2022; https://dx.doi.org/10.21203/rs.3.rs-1365493/v1. Preprint.


84. Shea S., Lionis C., Kite C. et al. Non-alcoholic fatty liver disease (NAFLD) and potential links to depression, anxiety, and chronic stress. Biomedicines. 2021; 9(11): 1697. https://dx.doi.org/10.3390/biomedicines9111697.


85. Newton J.L. Systemic symptoms in non-alcoholic fatty liver disease. Dig Dis. 2010; 28(1): 214–19. https://dx.doi.org/10.1159/000282089.


86. Colognesi M., Gabbia D., De Martin S. Depression and cognitive impairment-Extrahepatic manifestations of NAFLD and NASH. Biomedicines. 2020; 8(7): 229. https://dx.doi.org/10.3390/biomedicines8070229.


87. Prikhodko V.A., Sysoev Y.I., Poveryaeva M.A. et al. Effects of empagliflozin and L-ornithine L-aspartate on behavior, cognitive functions, and physical performance in mice with experimentally induced steatohepatitis. Bulletin of Russian State Medical University. 2020; 3: 49–57. https://dx.doi.org/10.24075/brsmu.2020.034. EDN: FLGJWF.


88. An K., Starkweather A., Sturgill J. et al. Association of CTRP13 with liver enzymes and cognitive symptoms in nonalcoholic fatty liver disease. Nurs Res. 2019; 68(1): 29–38. https://dx.doi.org/10.1097/NNR.0000000000000319.


89. Celikbilek A., Celikbilek M., Bozkurt G. Cognitive assessment of patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2018; 30(8): 944–50. https://dx.doi.org/10.1097/MEG.0000000000001131.


90. Felipo V., Urios A., Montesinos E. et al. Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis. 2012; 27(1): 51–58. https://dx.doi.org/10.1007/s11011-011-9269-3.


91. Tarter R.E., Hegedus A.M., van Thiel D.H. et al. Nonalcoholic cirrhosis associated with neuropsychological dysfunction in the absence of overt evidence of hepatic encephalopathy. Gastroenterology. 1984; 86(6): 1421–27.https://dx.doi.org/10.1016/S0016-5085(84)80154-7.


92. Elliott C., Frith J., Day C.P. et al. Functional impairment in alcoholic liver disease and non-alcoholic fatty liver disease is significant and persists over 3 years of follow-up. Dig Dis Sci. 2013; 58(8): 2383–91. https://dx.doi.org/10.1007/s10620-013-2657-2.


93. Swain M.G., Jones D.E.J. Fatigue in chronic liver disease: New insights and therapeutic approaches. Liver Int. 2019; 39(1): 6–19. https://dx.doi.org/10.1111/liv.13919.


94. Райхельсон К.Л., Кондрашина Э.А. Адеметионин в лечении повышенной утомляемости/слабости при заболеваниях печени: систематический обзор. Терапевтический архив. 2019; 91(2): 134–142.


95. Оганезова И.А. Астения как системное проявление хронических заболеваний печени: основы патофизиологии и возможности терапии. Фарматека. 2018; 9: 73–79.


96. Newton J.L., Jones D.E.J., Henderson E. et al. Fatigue in non-alcoholic fatty liver disease is severe and associates with inactivity and excessive daytime sleepiness but not with liver disease severity or insulin resistance. Gut. 2008; 57(6): 807–13. https://dx.doi.org/10.1136/gut.2007.139303.


97. Hickman I.J., Jonsson J.R., Prins J.B. et al. Modest weight loss and physical activity in over-weight patients with chronic liver disease results in sustained improvements in alanine aminotransferase, fasting insulin, and quality of life. Gut. 2004; 53(3): 413–19. https://dx.doi.org/10.1136/gut.2003.027581.


98. D’Mello C., Swain M.G. Liver-brain interactions in inflammatory liver diseases: Implications for fatigue and mood disorders. Brain Behav Immun. 2014; 35: 9–20. https://dx.doi.org/10.1016/j.bbi.2013.10.009.


99. Li W., Kadler B.K., Brindley J.H. et al. The contribution of daytime sleepiness to impaired quality of life in NAFLD in an ethnically diverse population. Sci Rep. 2022; 12(1): 5123. https://dx.doi.org/10.1038/s41598-022-08358-y.


100. Mir H.M., Stepanova M., Afendy H. et al. Association of sleep disorders with nonalcoholic fatty liver disease (NAFLD): A population-based study. J Clin Exp Hepatol. 2013; 3(3): 181–85. https://dx.doi.org/10.1016/j.jceh.2013.06.004.


101. Chung G.E., Cho E.J., Yoo J.J. et al. Nonalcoholic fatty liver disease is associated with the development of obstructive sleep apnea. Sci Rep. 2021; 11(1): 13743. https://dx.doi.org/10.1038/s41598-021-92703-0.


102. Plotogea O.-M., Diaconu C.C., Gheorghe G. et al. The prevalence and association of cognitive impairment with sleep disturbances in patients with chronic liver disease. Brain Sci. 2022; 12(4): 444. https://dx.doi.org/10.3390/brainsci12040444.


103. Williams K.H., Burns K., Constantino M. et al. An association of large-fibre peripheral nerve dysfunction with non-invasive measures of liver fibrosis secondary to non-alcoholic fatty liver disease in diabetes. J Diabetes Complications. 2015; 29(8): 1240–47.https://dx.doi.org/10.1016/j.jdiacomp.2015.06.015.


104. Gonzalez A., Huerta-Salgado C., Orozco-Aguilar J. et al. Role of oxidative stress in hepatic and extrahepatic dysfunctions during nonalcoholic fatty liver disease (NAFLD). Oxid Med Cell Longev. 2020; 2020: 1617805. https://dx.doi.org/10.1155/2020/1617805.


105. Bonhof G.J., Herder C., Strom A. et al. Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr Rev. 2019; 40(1):153–92. https://dx.doi.org/10.1210/er.2018-00107.


106. Thrainsdottir S., Malik R.A., Dahlin L.B. et al. Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes. 2003; 52(10): 2615–22. https://dx.doi.org/10.2337/diabetes.52.10.2615.


107. Toyoda H., Kumada T., Kiriyama S. et al. Higher hepatic gene expression and serum levels of matrix metalloproteinase-2 are associated with steatohepatitis in non-alcoholic fatty liver diseases. Biomarkers. 2013; 18(1): 82–87.https://dx.doi.org/10.3109/1354750X.2012.738249.


108. Trojanek J.B., Michalkiewicz J., Grzywa-Czuba R. et al. Expression of matrix metalloproteinases and their tissue inhibitors in peripheral blood leukocytes and plasma of children with nonalcoholic fatty liver disease. Mediators Inflamm. 2020; 2020: 8327945. https://dx.doi.org/10.1155/2020/8327945.


109. Liu K., Yang L., Wang G. et al. Metabolic stress drives sympathetic neuropathy within the liver. Cell Metab. 2021; 33(3): 666–75.e4. https://dx.doi.org/10.1016/j.cmet.2021.01.012.


110. Loring H.S., Thompson P.R. Emergence of SARM1 as a potential therapeutic target for Wallerian-type diseases. Cell Chem Biol. 2020; 27(1): 1–13. https://dx.doi.org/10.1016/j.chembiol.2019.11.002.


111. Chaudhry V., Corse A.M., O’Brian R. et al. Autonomic and peripheral (sensorimotor) neuropathy in chronic liver disease: A clinical and electrophysiologic study. Hepatology. 1999; 29(6): 1698–703. https://dx.doi.org/10.1002/hep.510290630.


112. Jain J., Singh R., Banait S. et al. Magnitude of peripheral neuropathy in cirrhosis of liver patients from central rural India. Ann Indian Acad Neurol. 2014; 17(4): 409–15. https://dx.doi.org/10.4103/0972-2327.144012.


113. Kharbanda P.S., Prabhakar S., Chawla Y.K. et al. Peripheral neuropathy in liver cirrhosis. J Gastroenterol Hepatol. 2003; 18(8): 922–26. https://dx.doi.org/10.1046/j.1440-1746.2003.03023.x.


114. Sun W., Zhang D., Sun J. et al. Association between non-alcoholic fatty liver disease and autonomic dysfunction in a Chinese population. QJM. 2015; 108(8): 617–24. https://dx.doi.org/10.1093/qjmed/hcv006.


Об авторах / Для корреспонденции


Вероника Александровна Приходько, ассистент кафедры фармакологии и клинической фармакологии ФГБОУ ВО «Санкт-Петербургский государственный химико-фармацевтический университет» Минздрава России, младший научный сотрудник лаборатории направленной внутримозговой доставки препаратов ФГБУН «Институт мозга человека им. Н.П. Бехтеревой» Российской академии наук. Адрес: 197022, г. Санкт-Петербург, ул. Профессора Попова, д. 4. E-mail: veronika.prihodko@pharminnotech.com. ORCID: https://orcid.org/0000-0002-4690-1811
Сергей Владимирович Оковитый, д.м.н., профессор, зав. кафедрой фармакологии и клинической фармакологии ФГБОУ ВО «Санкт-Петербургский государственный химико-фармацевтический университет» Минздрава России, зав. лабораторией направленной внутримозговой доставки препаратов ФГБУН «Институт мозга человека им. Н.П. Бехтеревой» Российской академии наук. Адрес: 197022, г. Санкт-Петербург, ул. Профессора Попова,
д. 4. E-mail: sergey.okovity@pharminnotech.com. ORCID: https://orcid.org/0000-0003-4294-5531


Похожие статьи


Бионика Медиа