Gut microbiome modulation and cardiovascular risks: Mechanisms of formation and correction


DOI: https://dx.doi.org/10.18565/therapy.2023.8.84-91

Livzan M.A., Bikbavova G.R., Safiulina T.A., Loginova E.N.

Omsk State Medical University of the Ministry of Healthcare of Russia
Abstract. Over the past few decades, cardiovascular diseases have been recognized as the leading cause of death in the world. Studies demonstrate the connection of gut microbiota and its metabolites with the development of cardiovascular pathology, and some of them indicate a high probability that an altered gut microbiome acts as an additional cardiovascular risk factor. The purpose of current review is to analyze the scientific literature concerning the role of intestinal microbiota in pathogenesis of coronary arteries atherosclerosis, its effect at lipid metabolism, peculiarities of the «atherogenic microbiome» and the possibilities of its correction. A search of literature was made in the PubMed and Google Scholar systems through full-text articles published in Russian and English up to August 2023, using key words «atherosclerosis», «intestinal microbiota», «cardiovascular diseases», «treatment», «correction».

Literature


1. Mc Namara K., Alzubaidi H., Jackson J.K. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. 2019; 8: 1–11. https://dx.doi.org/10.2147/IPRP.S133088.


2. Benjamin E.J., Muntner P., Alonso A. et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019; 139(10): e56–e528. https://dx.doi.org/10.1161/CIR.0000000000000659.


3. Cho J.H. Sudden death and ventricular arrhythmias in heart failure with preserved ejection fraction. Korean Circ J. 2022; 52(4): 251–64. https://dx.doi.org/10.4070/kcj.2021.0420.


4. Visseren F.L.J., Mach F., Smulders Y.M., et al. 2021 Рекомендации ESC по профилактике сердечно-сосудистых заболеваний в клинической практике. Российский кардиологический журнал. 2022; 27 (7): 191–288. [Visseren F.L.J., Mach F., Smulders Y.M. et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2022; 27(7): 191–288 (In Russ.)]. https://dx.doi.org/10.15829/1560-4071-2022-5155. EDN: VQDNIK.


5. Yusuf S., Hawken S., Ounpuu S., et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004; 364(9438): 937–52. https://dx.doi.org/10.1016/S0140-6736(04)17018-9.


6. Ursell L.K., Haiser H.J., Van Treuren W. et al. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology. 2014; 146(6): 1470–76. https://dx.doi.org/10.1053/j.gastro.2014.03.001.


7. Ливзан М.А., Бикбавова Г.Р., Романюк А.Е. Язвенный колит: в фокусе резистентность слизистой оболочки толстой кишки. Бюллетень сибирской медицины. 2022; 21(1): 121–132. [Livzan M.A., Bicbavova G.R., Romanyuk A.E. Ulcerative colitis: focus on colonic mucosal resistance. Byulleten’ sibirskoi meditsiny = Bulletin of Siberian Medicine. 2022; 21(1): 121–132 (In Russ.)]. https://dx.doi.org/10.20538/1682-0363-2022-1-121-132. EDN: QTFFPQ.


8. Кучумова С.Ю., Полуэктова А.А., Шептулин А.А. с соавт. Физиологическое значение кишечной микрофлоры. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2011; 21(5): 17–27. [Kuchumova S.Yu., Poluektova E.A., Sheptulin A.A. et al. The physiological significance of the intestinal microflora. Rossiyskiy zhurnal gastroenterology, gepatologii, koloproktologii = Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2011; 21(5): 17–27 (In Russ.)]. EDN: THWZPL.


9. Qin J., Li R., Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464(7285): 59–65. https://dx.doi.org/10.1038/nature08821


10. Swidsinski A., Loening-Baucke V., Lochs H. et al. Spatial organization of bacterial flora in normal and inflamed intestine: A fluorescence in situ hybridization study in mice. World J Gastroenterol. 2005; 11(9): 1131–40. https://dx.doi.org/10.3748/wjg. v11.i8.1131.


11. Andoh A. Physiological role of gut microbiota for maintaining human health. Digestion. 2016; 93(3): 176–81. https://dx.doi.org/10.1159/000444066.


12. Nogal A., Valdes A.M., Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. 2021; 13(1): 1–24. https://dx.doi.org/10.1080/19490976.2021.1897212.


13. Бикбавова Г.Р., Ливзан М.А., Заставная А.А. Виром кишечника и язвенный колит: новые грани взаимодействия. Экспериментальная и клиническая гастроэнтерология. 2019; (10): 66–71. [Bikbavova G.R., Livzan M.A., Zastavnaya A.A. Virom of intestinal canal and ulcerative colitis: New facets of interaction. Ehksperimental’naya i klinicheskaya gastroehnterologiya = Experimental and Clinical Gastroenterology. 2019; (10): 66–71 (In Russ.)]. https://dx.doi.org/10.31146/1682-8658-ecg-170-10-66-71. EDN: GWVWZA.


14. Razavi A.C., Potts K.S., Kelly T.N. et al. Sex, gut microbiome, and cardiovascular disease risk. Biol Sex Differ. 2019; 10 (1): 29. https://dx.doi.org/10.1186/s13293-019-0240-z.


15. Chen X.F., Chen X., Tang X. Short-chain fatty acid, acylation and cardiovascular diseases. Clin Sci (Lond). 2020; 134(6): 657–76. https://dx.doi.org/10.1042/CS20200128.


16. Yang S., Li X., Yang F. et al. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front Pharmacol. 2019; 10: 1360. https://dx.doi.org/10.3389/fphar.2019.01360


17. Heianza Y., Ma W., DiDonato J.A. et al. Long-term changes in gut microbial metabolite trimethylamine n-oxide and coronary heart disease risk. J Am Coll Cardiol. 2020; 75(7): 763–72. https://dx.doi.org/10.1016/j.jacc.2019.11.060.


18. Sanchez-Rodriguez E., Egea-Zorrilla A., Plaza-Diaz J. et al. The gut microbiota and its implication in the development of atherosclerosis and related cardiovascular diseases. Nutrients. 2020; 12(3): 605. https://dx.doi.org/10.3390/nu12030605.


19. Григорьева И.Н. Атеросклероз и триметиламин-N-оксид – потенциал кишечной микробиоты. Российский кардиологический журнал. 2022; 27(9): 142–147. [Grigorieva I.N. Atherosclerosis and trimethylamine-N-oxide – the gut microbiota potential. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2022; 27(9): 142–147 (In Russ.)]. https://dx.doi.org/10.15829/1560-4071-2022-5038. EDN: BYWBPL.


20. Драпкина О.М., Жамалов Л.М. Микробиота кишечника – новый фактор риска атеросклероза? Профилактическая медицина. 2022; 25(11): 92–97. [Drapkina O.M., Zhamalov L.M. Gut microbiota: A new risk factor for atherosclerosis? Profilakticheskaya meditsina = The Russian Journal of Preventive medicine. 2022; 25(11): 92–97 (In Russ.)]. https://dx.doi.org/10.17116/profmed20222511192 (In Russ.)]. EDN: BJVGQM.


21. Tang W.H.W., Li X.S., Wu Y. et al. Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study. Am Heart J. 2021; 236: 80–86. https://dx.doi.org/10.1016/j.ahj.2021.01.020.


22. Bui T.V., Hwangbo H., Lai Y. et al. The gut-heart axis: updated review for the roles of microbiome in cardiovascular health. Korean Circ J. 2023; 53(8): 499–518. https://dx.doi.org/10.4070/kcj.2023.0048.


23. Fukuda D., Nishimoto S., Aini K. et al. Toll-like receptor 9 plays a pivotal role in angiotensin ii-induced atherosclerosis. J Am Heart Assoc. 2019; 8(7): e010860. https://dx.doi.org/10.1161/JAHA.118.010860.


24. Sun M., Wu W., Liu Z. et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol. 2017; 52(1): 1–8. https://dx.doi.org/10.1007/s00535-016-1242-9.


25. Rogler G., Rosano G. The heart and the gut. Eur Heart J. 2014; 35(7): 426–30. https://dx.doi.org/10.1093/eurheartj/eht271.


26. Bui T.V.A., Hwang J.W., Lee J.H. et al. Challenges and limitations of strategies to promote therapeutic potential of human mesenchymal stem cells for cell-based cardiac repair. Korean Circ J. 2021; 51(2): 97–113. https://dx.doi.org/10.4070/kcj.2020.0518.


27. Kappel B.A., Federici M. Gut microbiome and cardiometabolic risk. Rev Endocr Metab Disord. 2019; 20(4): 399–406. https://dx.doi.org/10.1007/s11154-019-09533-9.


28. Драпкина О.М., Кабурова А.Н. Состав и метаболиты кишечной микробиоты как новые детерминанты развития сердечно-сосудистой патологии. Рациональная фармакотерапия в кардиологии. 2020; 16(2): 277–285. [Drapkina O.M., Kaburova A.N. Gut microbiota composition and metabolites as the new determinants of cardiovascular pathology development. Ratsional’naya farmakoterapiya v kardiologii = Rational Pharmacotherapy in Cardiology. 2020; 16(2): 277–285 (In Russ.)]. https://dx.doi.org/10.20996/1819-6446-2020-04-02 (In Russ.)]. EDN: DDLZKV.


29. Shen X., Li L., Sun Z. et al. Gut microbiota and atherosclerosis – focusing on the plaque stability. Front Cardiovasc Med. 2021; 8: 668532. https://dx.doi.org/10.3389/fcvm.2021.668532.


30. Gorabi A.M., Kiaie N., Khosrojerdi A. et al. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc Med. 2022; 32(8): 525–33. https://dx.doi.org/10.1016/j.tcm.2021.08.015.


31. Carnevale R., Nocella C., Petrozza V. et al. Localization of lipopolysaccharide from Escherichia Coli into human atherosclerotic plaque. Sci Rep. 2018; 8(1): 3598. https://dx.doi.org/10.1038/s41598-018-22076-4.


32. Toya T., Corban M.T., Marrietta E. et al. Coronary artery disease is associated with an altered gut microbiome composition. PLoS One. 2020; 15(1): e0227147. https://dx.doi.org/10.1371/journal.pone.0227147.


33. Микробиота. Монография. Под ред. Е.Л. Никонова, Е.Н. Поповой. М.: Медиа Сфера. 2019; 256 с. [Microbiota. Monograph. Ed. by Nikonov E.L., Popova E.N. Moscow: Media Sfera. 2019; 256 pp. (In Russ.)]. ISBN: 978-5-89084-058-5.


34. Vourakis M., Mayer G., Rousseau G. The role of gut microbiota on cholesterol metabolism in atherosclerosis. Int J Mol Sci. 2021; 22(15): 8074. https://dx.doi.org/10.3390/ijms22158074.


35. Weis M. Impact of the gut microbiome in cardiovascular and autoimmune diseases. Clin Sci (Lond). 2018; 132(22): 2387–89. https://dx.doi.org/10.1042/CS20180410.


36. Ma J., Li Y., Ye Q. et al. Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem. 2000; 48(11): 5220–25. https://dx.doi.org/10.1021/jf000338c.


37. Larkin T.A., Astheimer L.B., Price W.E. Dietary combination of soy with a probiotic or prebiotic food significantly reduces total and LDL cholesterol in mildly hypercholesterolaemic subjects. Eur J Clin Nutr. 2009; 63(2): 238–45. https://dx.doi.org/10.1038/sj.ejcn.1602910.


38. Chen G., Chen W., Xu J. et al. The current trend and challenges of developing red yeast rice-based food supplements for hypercholesterolemia. Journal of Future Foods. 2023; 3(4): 312–29. https://dx.doi.org/10.1016/j.jfutfo.2023.03.003.


39. Sugahara H., Odamaki T., Fukuda S. et al. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci Rep. 2015; 5: 13548. https://dx.doi.org/10.1038/srep13548.


40. Akatsu H., Iwabuchi N., Xiao J.Z. et al. Clinical effects of probiotic Bifidobacterium longum BB536 on immune function and intestinal microbiota in elderly patients receiving enteral tube feeding. JPEN J Parenter Enteral Nutr. 2013; 37(5): 631–40. https://dx.doi.org/10.1177/0148607112467819.


41. Grill J.P., Cayuela C., Antoine J.M., Schneider F. Effects of Lactobacillus amylovorus and Bifidobacterium breve on cholesterol. Lett Appl Microbiol. 2000; 31(2): 154–56. https://dx.doi.org/10.1046/j.1365-2672.2000.00792.x.


42. Chikai T., Nakao H., Uchida K. Deconjugation of bile acids by human intestinal bacteria implanted in germ-free rats. Lipids. 1987; 22(9): 669–71. https://dx.doi.org/10.1007/BF02533948.


43. El-Zahar K.M., Hassan M.F.Y., Al-Qaba S.F. Protective effect of fermented camel milk containing Bifidobacterium longum BB536 on blood lipid profile in hypercholesterolemic rats. J Nutr Metab. 2021; 2021: 1557945. https://dx.doi.org/10.1155/2021/1557945.


44. Wang L., Guo M.J., Gao Q. et al. The effects of probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2018; 97(5): e9679. https://dx.doi.org/10.1097/MD.0000000000009679.


45. Wu Y., Zhang Q., Ren Y., Ruan Z. Effect of probiotic Lactobacillus on lipid profile: A systematic review and meta-analysis of randomized, controlled trials. PLoS One. 2017; 12(6): e0178868. https://dx.doi.org/10.1371/journal.pone.0178868.


46. Shimizu M., Hashiguchi M., Shiga T. et al. Meta-analysis: Effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS One. 2015; 10(10): e0139795. https://dx.doi.org/10.1371/journal.pone.0139795.


47. Qiu L., Tao X., Xiong H. et al. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct. 2018; 9(8): 4299–309. https://dx.doi.org/10.1039/c8fo00349a.


48. Huang F., Zhang F., Xu D. et al. Enterococcus faecium WEFA23 from infants lessens high-fat-diet-induced hyperlipidemia via cholesterol 7-alpha-hydroxylase gene by altering the composition of gut microbiota in rats. J Dairy Sci. 2018; 101(9): 7757–67. https://dx.doi.org/10.3168/jds.2017-13713.


49. Nie K., Ma K., Luo W. et al. Roseburia intestinalis: A beneficial gut organism from the discoveries in genus and species. Front Cell Infect Microbiol. 2021; 11: 757718. https://dx.doi.org/10.3389/fcimb.2021.757718.


50. Kasahara K., Krautkramer K.A., Org E. et al. Interactions between Roseburia Intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol. 2018; 3(12): 1461–71. https://dx.doi.org/10.1038/s41564-018-0272-x.


51. Kang X., Liu C., Ding Y. et al. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8+ T cells. Gut. 2023: gutjnl-2023-330291. https://dx.doi.org/10.1136/gutjnl-2023-330291.


52. Cholesterol Treatment Trialists’ (CTT) Collaboration; Fulcher J., O’Connell R., Voysey M. et al. Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015; 385 (9976): 1397–405. https://dx.doi.org/10.1016/S0140-6736(14)61368-4.


53. De Backer G.G. Prevention of cardiovascular disease: Much more is needed. Eur J Prev Cardiol. 2018; 25(10): 1083–86. https://dx.doi.org/10.1177/2047487318770297.


54. Ward N.C., Pang J., Ryan J.D.M. et al. Nutraceuticals in the management of patients with statin-associated muscle symptoms, with a note on real-world experience. Clin Cardiol. 2018; 41(1): 159–65. https://dx.doi.org/10.1002/clc.22862.


55. Marazzi G., Campolongo G., Pelliccia F. et al. Comparison of low-dose statin versus low-dose statin + armolipid plus in high-intensity statin-intolerant patients with a previous coronary event and percutaneous coronary intervention (ADHERENCE Trial). Am J Cardiol. 2017; 120 (6): 893–97. https://dx.doi.org/10.1016/j.amjcard.2017.06.015.


About the Autors


Maria A. Livzan, MD, professor, corresponding member of RAS, rector, head of the Department of faculty therapy and gastroenterology, Omsk State Medical University of the Ministry of Healthcare of Russia. Address: 644099, Omsk, 12 Lenina St.
E-mail: mlivzan@yandex.ru
ORCID: https://orcid.org/0000-0002-6581-7017
Galia R. Bikbavova, PhD in Medical Sciences, associate professor, associate professor of the Department of hospital therapy, endocrinology, Omsk State Medical University of the Ministry of Healthcare of Russia. Address: 644099, Omsk, 12 Lenina St.
E-mail: galiya1976@mail.ru
ORCID: https://orcid.org/0000-0001-9252-9152
Tamara A. Safiulina, resident of the Department of hospital therapy, endocrinology, Omsk State Medical University of the Ministry of Healthcare of Russia. Address: 644099, Omsk, 12 Lenina St.
E-mail: t.a.safiulina@gmail.com
ORCID: https://orcid.org/0009-0007-6574-9310
Ekaterina N. Loginova, PhD in Medical Sciences, associate professor, associate professor of the Department of internal medicine and family medicine, Omsk State Medical University of the Ministry of Healthcare of Russia. Address: 644099, Omsk, 12 Lenina St.
E-mail: log-ekaterina@yandex.ru
ORCID: https://orcid.org/0000-0002-0601-7044


Similar Articles


Бионика Медиа