DOI: https://dx.doi.org/10.18565/therapy.2023.8.84-91
М.А. Ливзан, Г.Р. Бикбавова, Т.А. Сафиулина, Е.Н. Логинова
ФГБОУ ВО «Омский государственный медицинский университет» Минздрава России
1. Mc Namara K., Alzubaidi H., Jackson J.K. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. 2019; 8: 1–11. https://dx.doi.org/10.2147/IPRP.S133088. 2. Benjamin E.J., Muntner P., Alonso A. et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019; 139(10): e56–e528. https://dx.doi.org/10.1161/CIR.0000000000000659. 3. Cho J.H. Sudden death and ventricular arrhythmias in heart failure with preserved ejection fraction. Korean Circ J. 2022; 52(4): 251–64. https://dx.doi.org/10.4070/kcj.2021.0420. 4. Visseren F.L.J., Mach F., Smulders Y.M., et al. 2021 Рекомендации ESC по профилактике сердечно-сосудистых заболеваний в клинической практике. Российский кардиологический журнал. 2022; 27 (7): 191–288. 5. Yusuf S., Hawken S., Ounpuu S., et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004; 364(9438): 937–52. https://dx.doi.org/10.1016/S0140-6736(04)17018-9. 6. Ursell L.K., Haiser H.J., Van Treuren W. et al. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology. 2014; 146(6): 1470–76. https://dx.doi.org/10.1053/j.gastro.2014.03.001. 7. Ливзан М.А., Бикбавова Г.Р., Романюк А.Е. Язвенный колит: в фокусе резистентность слизистой оболочки толстой кишки. Бюллетень сибирской медицины. 2022; 21(1): 121–132. 8. Кучумова С.Ю., Полуэктова А.А., Шептулин А.А. с соавт. Физиологическое значение кишечной микрофлоры. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2011; 21(5): 17–27. 9. Qin J., Li R., Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464(7285): 59–65. https://dx.doi.org/10.1038/nature08821 10. Swidsinski A., Loening-Baucke V., Lochs H. et al. Spatial organization of bacterial flora in normal and inflamed intestine: A fluorescence in situ hybridization study in mice. World J Gastroenterol. 2005; 11(9): 1131–40. https://dx.doi.org/10.3748/wjg. v11.i8.1131. 11. Andoh A. Physiological role of gut microbiota for maintaining human health. Digestion. 2016; 93(3): 176–81. https://dx.doi.org/10.1159/000444066. 12. Nogal A., Valdes A.M., Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. 2021; 13(1): 1–24. https://dx.doi.org/10.1080/19490976.2021.1897212. 13. Бикбавова Г.Р., Ливзан М.А., Заставная А.А. Виром кишечника и язвенный колит: новые грани взаимодействия. Экспериментальная и клиническая гастроэнтерология. 2019; (10): 66–71. 14. Razavi A.C., Potts K.S., Kelly T.N. et al. Sex, gut microbiome, and cardiovascular disease risk. Biol Sex Differ. 2019; 10 (1): 29. https://dx.doi.org/10.1186/s13293-019-0240-z. 15. Chen X.F., Chen X., Tang X. Short-chain fatty acid, acylation and cardiovascular diseases. Clin Sci (Lond). 2020; 134(6): 657–76. https://dx.doi.org/10.1042/CS20200128. 16. Yang S., Li X., Yang F. et al. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front Pharmacol. 2019; 10: 1360. https://dx.doi.org/10.3389/fphar.2019.01360 17. Heianza Y., Ma W., DiDonato J.A. et al. Long-term changes in gut microbial metabolite trimethylamine n-oxide and coronary heart disease risk. J Am Coll Cardiol. 2020; 75(7): 763–72. https://dx.doi.org/10.1016/j.jacc.2019.11.060. 18. Sanchez-Rodriguez E., Egea-Zorrilla A., Plaza-Diaz J. et al. The gut microbiota and its implication in the development of atherosclerosis and related cardiovascular diseases. Nutrients. 2020; 12(3): 605. https://dx.doi.org/10.3390/nu12030605. 19. Григорьева И.Н. Атеросклероз и триметиламин-N-оксид – потенциал кишечной микробиоты. Российский кардиологический журнал. 2022; 27(9): 142–147. 20. Драпкина О.М., Жамалов Л.М. Микробиота кишечника – новый фактор риска атеросклероза? Профилактическая медицина. 2022; 25(11): 92–97. 21. Tang W.H.W., Li X.S., Wu Y. et al. Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study. Am Heart J. 2021; 236: 80–86. https://dx.doi.org/10.1016/j.ahj.2021.01.020. 22. Bui T.V., Hwangbo H., Lai Y. et al. The gut-heart axis: updated review for the roles of microbiome in cardiovascular health. Korean Circ J. 2023; 53(8): 499–518. https://dx.doi.org/10.4070/kcj.2023.0048. 23. Fukuda D., Nishimoto S., Aini K. et al. Toll-like receptor 9 plays a pivotal role in angiotensin ii-induced atherosclerosis. J Am Heart Assoc. 2019; 8(7): e010860. https://dx.doi.org/10.1161/JAHA.118.010860. 24. Sun M., Wu W., Liu Z. et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol. 2017; 52(1): 1–8. https://dx.doi.org/10.1007/s00535-016-1242-9. 25. Rogler G., Rosano G. The heart and the gut. Eur Heart J. 2014; 35(7): 426–30. https://dx.doi.org/10.1093/eurheartj/eht271. 26. Bui T.V.A., Hwang J.W., Lee J.H. et al. Challenges and limitations of strategies to promote therapeutic potential of human mesenchymal stem cells for cell-based cardiac repair. Korean Circ J. 2021; 51(2): 97–113. https://dx.doi.org/10.4070/kcj.2020.0518. 27. Kappel B.A., Federici M. Gut microbiome and cardiometabolic risk. Rev Endocr Metab Disord. 2019; 20(4): 399–406. https://dx.doi.org/10.1007/s11154-019-09533-9. 28. Драпкина О.М., Кабурова А.Н. Состав и метаболиты кишечной микробиоты как новые детерминанты развития сердечно-сосудистой патологии. Рациональная фармакотерапия в кардиологии. 2020; 16(2): 277–285. 29. Shen X., Li L., Sun Z. et al. Gut microbiota and atherosclerosis – focusing on the plaque stability. Front Cardiovasc Med. 2021; 8: 668532. https://dx.doi.org/10.3389/fcvm.2021.668532. 30. Gorabi A.M., Kiaie N., Khosrojerdi A. et al. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc Med. 2022; 32(8): 525–33. https://dx.doi.org/10.1016/j.tcm.2021.08.015. 31. Carnevale R., Nocella C., Petrozza V. et al. Localization of lipopolysaccharide from Escherichia Coli into human atherosclerotic plaque. Sci Rep. 2018; 8(1): 3598. https://dx.doi.org/10.1038/s41598-018-22076-4. 32. Toya T., Corban M.T., Marrietta E. et al. Coronary artery disease is associated with an altered gut microbiome composition. PLoS One. 2020; 15(1): e0227147. https://dx.doi.org/10.1371/journal.pone.0227147. 33. Микробиота. Монография. Под ред. Е.Л. Никонова, Е.Н. Поповой. М.: Медиа Сфера. 2019; 256 с. 34. Vourakis M., Mayer G., Rousseau G. The role of gut microbiota on cholesterol metabolism in atherosclerosis. Int J Mol Sci. 2021; 22(15): 8074. https://dx.doi.org/10.3390/ijms22158074. 35. Weis M. Impact of the gut microbiome in cardiovascular and autoimmune diseases. Clin Sci (Lond). 2018; 132(22): 2387–89. https://dx.doi.org/10.1042/CS20180410. 36. Ma J., Li Y., Ye Q. et al. Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem. 2000; 48(11): 5220–25. https://dx.doi.org/10.1021/jf000338c. 37. Larkin T.A., Astheimer L.B., Price W.E. Dietary combination of soy with a probiotic or prebiotic food significantly reduces total and LDL cholesterol in mildly hypercholesterolaemic subjects. Eur J Clin Nutr. 2009; 63(2): 238–45. https://dx.doi.org/10.1038/sj.ejcn.1602910. 38. Chen G., Chen W., Xu J. et al. The current trend and challenges of developing red yeast rice-based food supplements for hypercholesterolemia. Journal of Future Foods. 2023; 3(4): 312–29. https://dx.doi.org/10.1016/j.jfutfo.2023.03.003. 39. Sugahara H., Odamaki T., Fukuda S. et al. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci Rep. 2015; 5: 13548. https://dx.doi.org/10.1038/srep13548. 40. Akatsu H., Iwabuchi N., Xiao J.Z. et al. Clinical effects of probiotic Bifidobacterium longum BB536 on immune function and intestinal microbiota in elderly patients receiving enteral tube feeding. JPEN J Parenter Enteral Nutr. 2013; 37(5): 631–40. https://dx.doi.org/10.1177/0148607112467819. 41. Grill J.P., Cayuela C., Antoine J.M., Schneider F. Effects of Lactobacillus amylovorus and Bifidobacterium breve on cholesterol. Lett Appl Microbiol. 2000; 31(2): 154–56. https://dx.doi.org/10.1046/j.1365-2672.2000.00792.x. 42. Chikai T., Nakao H., Uchida K. Deconjugation of bile acids by human intestinal bacteria implanted in germ-free rats. Lipids. 1987; 22(9): 669–71. https://dx.doi.org/10.1007/BF02533948. 43. El-Zahar K.M., Hassan M.F.Y., Al-Qaba S.F. Protective effect of fermented camel milk containing Bifidobacterium longum BB536 on blood lipid profile in hypercholesterolemic rats. J Nutr Metab. 2021; 2021: 1557945. https://dx.doi.org/10.1155/2021/1557945. 44. Wang L., Guo M.J., Gao Q. et al. The effects of probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2018; 97(5): e9679. https://dx.doi.org/10.1097/MD.0000000000009679. 45. Wu Y., Zhang Q., Ren Y., Ruan Z. Effect of probiotic Lactobacillus on lipid profile: A systematic review and meta-analysis of randomized, controlled trials. PLoS One. 2017; 12(6): e0178868. https://dx.doi.org/10.1371/journal.pone.0178868. 46. Shimizu M., Hashiguchi M., Shiga T. et al. Meta-analysis: Effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS One. 2015; 10(10): e0139795. https://dx.doi.org/10.1371/journal.pone.0139795. 47. Qiu L., Tao X., Xiong H. et al. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct. 2018; 9(8): 4299–309. https://dx.doi.org/10.1039/c8fo00349a. 48. Huang F., Zhang F., Xu D. et al. Enterococcus faecium WEFA23 from infants lessens high-fat-diet-induced hyperlipidemia via cholesterol 7-alpha-hydroxylase gene by altering the composition of gut microbiota in rats. J Dairy Sci. 2018; 101(9): 7757–67. https://dx.doi.org/10.3168/jds.2017-13713. 49. Nie K., Ma K., Luo W. et al. Roseburia intestinalis: A beneficial gut organism from the discoveries in genus and species. Front Cell Infect Microbiol. 2021; 11: 757718. https://dx.doi.org/10.3389/fcimb.2021.757718. 50. Kasahara K., Krautkramer K.A., Org E. et al. Interactions between Roseburia Intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol. 2018; 3(12): 1461–71. https://dx.doi.org/10.1038/s41564-018-0272-x. 51. Kang X., Liu C., Ding Y. et al. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8+ T cells. Gut. 2023: gutjnl-2023-330291. https://dx.doi.org/10.1136/gutjnl-2023-330291. 52. Cholesterol Treatment Trialists’ (CTT) Collaboration; Fulcher J., O’Connell R., Voysey M. et al. Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015; 385 (9976): 1397–405. https://dx.doi.org/10.1016/S0140-6736(14)61368-4. 53. De Backer G.G. Prevention of cardiovascular disease: Much more is needed. Eur J Prev Cardiol. 2018; 25(10): 1083–86. https://dx.doi.org/10.1177/2047487318770297. 54. Ward N.C., Pang J., Ryan J.D.M. et al. Nutraceuticals in the management of patients with statin-associated muscle symptoms, with a note on real-world experience. Clin Cardiol. 2018; 41(1): 159–65. https://dx.doi.org/10.1002/clc.22862. 55. Marazzi G., Campolongo G., Pelliccia F. et al. Comparison of low-dose statin versus low-dose statin + armolipid plus in high-intensity statin-intolerant patients with a previous coronary event and percutaneous coronary intervention (ADHERENCE Trial). Am J Cardiol. 2017; 120 (6): 893–97. https://dx.doi.org/10.1016/j.amjcard.2017.06.015.
Мария Анатольевна Ливзан, д.м.н., профессор, член-корр. РАН, ректор, зав. кафедрой факультетской терапии и гастроэнтерологии ФГБОУ ВО «Омский государственный медицинский университет» Минздрава России.
Адрес: 644099, Омск, ул. Ленина, д. 12.
E-mail: mlivzan@yandex.ru
ORCID: https://orcid.org/0000-0002-6581-7017
Галия Равильевна Бикбавова, к.м.н., доцент, доцент кафедры госпитальной терапии, эндокринологии ФГБОУ ВО «Омский государственный медицинский университет» Минздрава России. Адрес: 644099, Омск, ул. Ленина, д. 12.
E-mail: galiya1976@mail.ru
ORCID: https://orcid.org/0000-0001-9252-9152
Тамара Александровна Сафиулина, ординатор кафедры госпитальной терапии, эндокринологии ФГБОУ ВО «Омский государственный медицинский университет» Минздрава России. Адрес: 644099, Омск, ул. Ленина, д. 12.
E-mail: t.a.safiulina@gmail.com
ORCID: https://orcid.org/0009-0007-6574-9310
Екатерина Николаевна Логинова, к.м.н., доцент, доцент кафедры внутренних болезней и семейной медицины ДПО ФГБОУ ВО «Омский государственный медицинский университет» Минздрава России. Адрес: 644099, Омск, ул. Ленина, д. 12
E-mail: log-ekaterina@yandex.ru
ORCID: https://orcid.org/0000-0002-0601-7044